urld / app.py
acecalisto3's picture
Update app.py
6fb3663 verified
raw
history blame
17 kB
import json
import os
import re
import time
import logging
import mimetypes
import zipfile
import tempfile
from datetime import datetime
from typing import List, Dict, Optional, Union, Any
from pathlib import Path
import requests
import validators
import gradio as gr
from bs4 import BeautifulSoup
from fake_useragent import UserAgent
from cleantext import clean
# Setup logging with detailed configuration
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - [%(filename)s:%(lineno)d] - %(message)s',
handlers=[
logging.StreamHandler(),
logging.FileHandler('app.log', encoding='utf-8')
]
)
logger = logging.getLogger(__name__)
class URLProcessor:
def __init__(self):
self.session = requests.Session()
self.timeout = 10 # seconds
self.session.headers.update({
'User-Agent': UserAgent().random,
'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8',
'Accept-Language': 'en-US,en;q=0.5',
'Accept-Encoding': 'gzip, deflate, br',
'Connection': 'keep-alive',
'Upgrade-Insecure-Requests': '1'
})
def advanced_text_cleaning(self, text: str) -> str:
"""Robust text cleaning with version compatibility"""
try:
cleaned_text = clean(
text,
fix_unicode=True,
to_ascii=True,
lower=True,
no_line_breaks=True,
no_urls=True,
no_emails=True,
no_phone_numbers=True,
no_numbers=False,
no_digits=False,
no_currency_symbols=True,
no_punct=False
).strip()
return cleaned_text
except Exception as e:
logger.warning(f"Text cleaning error: {e}. Using fallback method.")
text = re.sub(r'[\x00-\x1F\x7F-\x9F]', '', text) # Remove control characters
text = text.encode('ascii', 'ignore').decode('ascii') # Remove non-ASCII characters
text = re.sub(r'\s+', ' ', text) # Normalize whitespace
return text.strip()
def validate_url(self, url: str) -> Dict:
"""Validate URL format and accessibility"""
try:
if not validators.url(url):
return {'is_valid': False, 'message': 'Invalid URL format'}
response = self.session.head(url, timeout=self.timeout)
response.raise_for_status()
return {'is_valid': True, 'message': 'URL is valid and accessible'}
except Exception as e:
return {'is_valid': False, 'message': f'URL validation failed: {str(e)}'}
def fetch_content(self, url: str) -> Optional[Dict]:
"""Universal content fetcher with special case handling"""
try:
if 'drive.google.com' in url:
return self._handle_google_drive(url)
if 'calendar.google.com' in url and 'ical' in url:
return self._handle_google_calendar(url)
return self._fetch_html_content(url)
except Exception as e:
logger.error(f"Content fetch failed: {e}")
return None
def _handle_google_drive(self, url: str) -> Optional[Dict]:
"""Process Google Drive file links"""
try:
file_id = re.search(r'/file/d/([a-zA-Z0-9_-]+)', url)
if not file_id:
logger.error(f"Invalid Google Drive URL: {url}")
return None
direct_url = f"https://drive.google.com/uc?export=download&id={file_id.group(1)}"
response = self.session.get(direct_url, timeout=self.timeout)
response.raise_for_status()
return {
'content': response.text,
'content_type': response.headers.get('Content-Type', ''),
'timestamp': datetime.now().isoformat()
}
except Exception as e:
logger.error(f"Google Drive processing failed: {e}")
return None
def _handle_google_calendar(self, url: str) -> Optional[Dict]:
"""Process Google Calendar ICS feeds"""
try:
response = self.session.get(url, timeout=self.timeout)
response.raise_for_status()
return {
'content': response.text,
'content_type': 'text/calendar',
'timestamp': datetime.now().isoformat()
}
except Exception as e:
logger.error(f"Calendar fetch failed: {e}")
return None
def _fetch_html_content(self, url: str) -> Optional[Dict]:
"""Standard HTML content processing"""
try:
response = self.session.get(url, timeout=self.timeout)
response.raise_for_status()
soup = BeautifulSoup(response.text, 'html.parser')
for element in soup(['script', 'style', 'nav', 'footer', 'header', 'meta', 'link']):
element.decompose()
main_content = soup.find('main') or soup.find('article') or soup.body
text_content = main_content.get_text(separator='\n', strip=True)
cleaned_content = self.advanced_text_cleaning(text_content)
return {
'content': cleaned_content,
'content_type': response.headers.get('Content-Type', ''),
'timestamp': datetime.now().isoformat()
}
except Exception as e:
logger.error(f"HTML processing failed: {e}")
return None
class FileProcessor:
"""Class to handle file processing"""
def __init__(self, max_file_size: int = 2 * 1024 * 1024 * 1024): # 2GB default
self.max_file_size = max_file_size
self.supported_text_extensions = {'.txt', '.md', '.csv', '.json', '.xml'}
def is_text_file(self, filepath: str) -> bool:
"""Check if file is a text file"""
try:
mime_type, _ = mimetypes.guess_type(filepath)
return (mime_type and mime_type.startswith('text/')) or \
(os.path.splitext(filepath)[1].lower() in self.supported_text_extensions)
except Exception:
return False
def process_files(self, files: Union[List[gr.File], List[str]]) -> List[Dict]:
"""Process multiple uploaded files and return a single JSON extraction"""
if not files:
return []
combined_data = []
try:
for file in files:
# Check if the file is a Gradio File object or a string path
file_name = file.name if isinstance(file, gr.File) else file
file_size = os.path.getsize(file_name)
if file_size > self.max_file_size:
logger.warning(f"File size ({file_size} bytes) exceeds maximum allowed size")
continue # Skip this file
if zipfile.is_zipfile(file_name):
combined_data.extend(self._process_zip_file(file_name))
else:
combined_data.extend(self._process_single_file(file_name))
except Exception as e:
logger.error(f"Error processing files: {str(e)}")
return []
return combined_data
def _process_zip_file(self, zip_path: str) -> List[Dict]:
"""Process ZIP file contents"""
results = []
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
with tempfile.TemporaryDirectory() as temp_dir:
zip_ref.extractall(temp_dir)
for root, _, files in os.walk(temp_dir):
for filename in files:
filepath = os.path.join(root, filename)
if self.is_text_file(filepath):
try:
with open(filepath, 'r', encoding='utf-8', errors='ignore') as f:
content = f.read()
if content.strip():
results.append({
"source": "file",
"filename": filename,
"content": content,
"timestamp": datetime.now().isoformat()
})
except Exception as e:
logger.error(f"Error reading file {filename}: {str(e)}")
return results
def _process_single_file(self, file_path: str) -> List[Dict]:
try:
file_stat = os.stat(file_path)
with open(file_path, 'r', encoding='utf-8', errors='ignore') as f:
content = f.read()
return [{
'source': 'file',
'filename': os.path.basename(file_path),
'file_size': file_stat.st_size,
'mime_type': mimetypes.guess_type(file_path)[0],
'created': datetime.fromtimestamp(file_stat.st_ctime).isoformat(),
'modified': datetime.fromtimestamp(file_stat.st_mtime).isoformat(),
'content': content,
'timestamp': datetime.now().isoformat()
}]
except Exception as e:
logger.error(f"File processing error: {e}")
return []
class Chatbot:
"""Simple chatbot that uses provided JSON data for responses."""
def __init__(self):
self.data = None
def load_data(self, json_data: str):
"""Load JSON data into the chatbot."""
try:
self.data = json.loads(json_data)
return "Data loaded successfully!"
except json.JSONDecodeError:
return "Invalid JSON data. Please check your input."
def chat(self, user_input: str) -> str:
"""Generate a response based on user input and loaded data."""
if not self.data:
return "No data loaded. Please load your JSON data first."
# Simple keyword-based response logic
for key, value in self.data.items():
if key.lower() in user_input.lower():
return f"{key}: {value}"
return "I don't have information on that. Please ask about something else."
def create_interface():
"""Create a comprehensive Gradio interface with advanced features"""
css = """
body { background-color: #f0f4f8; font-family: 'Arial', sans-serif; }
.container { max-width: 1200px; margin: auto; padding: 20px; border-radius: 8px; box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1); }
h1 { color: #333; }
.tab { background-color: #ffffff; border-radius: 8px; padding: 20px; margin-bottom: 20px; }
.button { background-color: #007bff; color: white; border: none; border-radius: 5px; padding: 10px 20px; cursor: pointer; }
.button:hover { background-color: #0056b3; }
.warning { background-color: #fff3cd; color: #856404; padding: 10px; border-radius: 5px; }
.error { background-color: #f8d7da; color: #721c24; padding: 10px; border-radius: 5px; }
"""
with gr.Blocks(css=css, title="Advanced Data Processing App") as interface:
gr.Markdown("# 🌐 Advanced Data Processing Toolkit")
with gr.Tab("URL Processing"):
url_input = gr.Textbox(
label="Enter URLs (comma or newline separated)",
lines=5,
placeholder="https://example1.com\nhttps://example2.com"
)
with gr.Tab("File Input"):
file_input = gr.File(
label="Upload text files or ZIP archives",
file_types=[".txt", ".zip", ".md", ".csv", ".json", ".xml"],
multiple=True # Allow multiple file uploads
)
with gr.Tab("Text Input"):
text_input = gr.Textbox(
label="Raw Text Input",
lines=5,
placeholder="Paste your text here..."
)
with gr.Tab("Chat"):
chat_input = gr.Textbox(
label="Chat with your data",
placeholder="Type your question here..."
)
json_input = gr.Textbox(
label="Load JSON Data",
placeholder="Paste your JSON data here...",
lines=5
)
load_btn = gr.Button("Load Data", variant="primary")
chat_output = gr.Textbox(label="Chatbot Response", interactive=False)
process_btn = gr.Button("Process Input", variant="primary")
output_text = gr.Textbox(label="Processing Results", interactive=False)
output_file = gr.File(label="Processed Output")
# Initialize chatbot
chatbot = Chatbot()
def process_all_inputs(urls, files, text):
"""Process all input types with progress tracking"""
try:
processor = URLProcessor()
file_processor = FileProcessor()
results = []
# Process URLs
if urls:
url_list = re.split(r '[,\n]', urls)
url_list = [url.strip() for url in url_list if url.strip()]
for url in url_list:
validation = processor.validate_url(url)
if validation.get('is_valid'):
content = processor.fetch_content(url)
if content:
results.append({
'source': 'url',
'url': url,
'content': content,
'timestamp': datetime.now().isoformat()
})
# Process files
if files:
combined_data = file_processor.process_files(files)
results.extend(combined_data)
# Process text input
if text:
cleaned_text = processor.advanced_text_cleaning(text)
results.append({
'source': 'direct_input',
'content': cleaned_text,
'timestamp': datetime.now().isoformat()
})
# Generate output
if results:
output_dir = Path('output') / datetime.now().strftime('%Y-%m-%d')
output_dir.mkdir(parents=True, exist_ok=True)
output_path = output_dir / f'processed_{int(time.time())}.json'
with open(output_path, 'w', encoding='utf-8') as f:
json.dump(results, f, ensure_ascii=False, indent=2)
summary = f"Processed {len(results)} items successfully!"
return str(output_path), summary
else:
return None, "No valid content to process."
except Exception as e:
logger.error(f"Processing error: {e}")
return None, f"Error: {str(e)}"
def load_chat_data(json_data):
"""Load JSON data into the chatbot."""
return chatbot.load_data(json_data)
def chat_with_data(user_input):
"""Chat with the loaded data."""
return chatbot.chat(user_input)
process_btn.click(
process_all_inputs,
inputs=[url_input, file_input, text_input],
outputs=[output_file, output_text]
)
load_btn.click(
load_chat_data,
inputs=json_input,
outputs=chat_output
)
chat_input.submit(
chat_with_data,
inputs=chat_input,
outputs=chat_output
)
gr.Markdown("""
### Usage Guidelines
- **URL Processing**: Enter valid HTTP/HTTPS URLs
- **File Input**: Upload multiple text files or ZIP archives
- **Text Input**: Direct text processing
- **Chat**: Load your JSON data and ask questions about it
- Advanced cleaning and validation included
""")
return interface
def main():
# Configure system settings
mimetypes.init()
# Create and launch interface
interface = create_interface()
# Launch with proper configuration
interface.launch(
server_name="0.0.0.0",
server_port=7860,
share=True, # Enable public sharing
inbrowser=False,
debug=False
)
if __name__ == "__main__":
main()