urld / app.py
acecalisto3's picture
Update app.py
83a6fef verified
raw
history blame
14 kB
import json
import os
import re
import time
import logging
import mimetypes
import concurrent.futures
import string
from typing import List, Dict, Optional, Union
from pathlib import Path
from urllib.parse import urlparse
import requests
import validators
import gradio as gr
from diskcache import Cache
from bs4 import BeautifulSoup
from fake_useragent import UserAgent
from ratelimit import limits, sleep_and_retry
from cleantext import clean
# Setup logging with detailed configuration
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - [%(filename)s:%(lineno)d] - %(message)s',
handlers=[
logging.StreamHandler(),
logging.FileHandler('app.log', encoding='utf-8')
]
)
logger = logging.getLogger(__name__)
class URLProcessor:
"""Class to handle URL processing with advanced features"""
def __init__(self, timeout=15, max_retries=3, cache_dir='cache'):
self.ua = UserAgent() # Initialize UserAgent first
self.timeout = timeout
self.max_retries = max_retries
# Persistent caching setup
self.cache_dir = Path(cache_dir)
self.cache_dir.mkdir(exist_ok=True)
self.url_cache = Cache(str(self.cache_dir / 'url_cache'))
self.content_cache = Cache(str(self.cache_dir / 'content_cache'), size_limit=2**30)
# Session configuration
self.session = requests.Session()
self.session.headers.update({
'User-Agent': self.ua.random, # Correct header key
'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
'Accept-Language': 'en-US,en;q=0.5',
'Connection': 'keep-alive'
})
@sleep_and_retry
@limits(calls=10, period=60) # Rate limiting: 10 calls per minute
def validate_url(self, url: str) -> Dict[str, Union[bool, str]]:
"""Validate URL format and accessibility"""
try:
# Check cache first
if url in self.url_cache:
return self.url_cache[url]
result = urlparse(url)
validation_result = {
'is_valid': False,
'message': 'Invalid URL',
'scheme': result.scheme,
'netloc': result.netloc
}
if not all([result.scheme, result.netloc]):
validation_result['message'] = 'Missing scheme or network location'
return validation_result
if not validators.url(url):
validation_result['message'] = 'URL format validation failed'
return validation_result
# Perform HEAD request for accessibility
try:
response = self.session.head(url, timeout=self.timeout, allow_redirects=True)
validation_result['is_valid'] = response.status_code in [200, 301, 302]
validation_result['status_code'] = response.status_code
validation_result['message'] = f"URL is {'valid' if validation_result['is_valid'] else 'invalid'}"
except requests.RequestException as e:
validation_result['message'] = f"Connection error: {str(e)}"
# Cache the result
self.url_cache[url] = validation_result
return validation_result
except Exception as e:
logger.error(f"Unexpected error validating URL {url}: {e}")
return {
'is_valid': False,
'message': f"Unexpected validation error: {str(e)}"
}
@sleep_and_retry
@limits(calls=20, period=60) # Refined rate limiting
def fetch_content(self, url: str) -> Optional[Dict]:
cached = self.content_cache.get(url)
if cached:
return cached
try:
response = self.session.get(url, timeout=self.timeout)
soup = BeautifulSoup(response.text, 'html.parser')
# Extract structured elements
title = soup.title.text.strip() if soup.title else ''
meta_desc = soup.find('meta', {'name': 'description'})
description = meta_desc['content'].strip() if meta_desc else ''
headings = [{'level': h.name, 'text': h.text.strip()}
for h in soup.find_all(['h1', 'h2', 'h3', 'h4', 'h5', 'h6'])]
links = [a['href'] for a in soup.find_all('a', href=True)
if validators.url(a['href'])]
# Main content extraction
for element in soup(['script', 'style', 'nav', 'footer']):
element.decompose()
main_content = soup.find('main') or soup.find('article') or soup.body
text = main_content.get_text(separator=' ') if main_content else ''
structured_data = {
'title': title,
'description': description,
'headings': headings,
'links': links,
'content': self.advanced_text_cleaning(text),
'status_code': response.status_code,
'content_type': response.headers.get('Content-Type', ''),
'timestamp': datetime.now().isoformat()
}
self.content_cache.set(url, structured_data, expire=3600)
return structured_data
except Exception as e:
logger.error(f"Error fetching {url}: {e}")
return None
def advanced_text_cleaning(self, text: str) -> str:
return clean(text,
fix_unicode=True,
to_ascii=True,
lower=True,
no_line_breaks=True,
no_urls=True,
no_emails=True,
no_phone_numbers=True,
no_numbers=False,
no_digits=False,
no_currency_symbols=True,
no_punct=False
).strip()
class FileProcessor:
"""Class to handle file processing"""
def __init__(self, max_file_size: int = 10 * 1024 * 1024): # 10MB default
self.max_file_size = max_file_size
self.supported_text_extensions = {'.txt', '.md', '.csv', '.json', '.xml'}
def is_text_file(self, filepath: str) -> bool:
"""Check if file is a text file"""
try:
mime_type, _ = mimetypes.guess_type(filepath)
return mime_type and mime_type.startswith('text/')
except Exception:
return False
def process_file(self, file) -> List[Dict]:
"""Process uploaded file with enhanced error handling"""
if not file:
return []
dataset = []
try:
file_size = os.path.getsize(file.name)
if file_size > self.max_file_size:
logger.warning(f"File size ({file_size} bytes) exceeds maximum allowed size")
return []
with tempfile.TemporaryDirectory() as temp_dir:
if zipfile.is_zipfile(file.name):
dataset.extend(self._process_zip_file(file.name, temp_dir))
else:
dataset.extend(self._process_single_file(file))
except Exception as e:
logger.error(f"Error processing file: {str(e)}")
return []
return dataset
def _process_zip_file(self, zip_path: str, temp_dir: str) -> List[Dict]:
"""Process ZIP file contents"""
results = []
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
zip_ref.extractall(temp_dir)
for root, _, files in os.walk(temp_dir):
for filename in files:
filepath = os.path.join(root, filename)
if self.is_text_file(filepath):
try:
with open(filepath, 'r', errors='ignore') as f:
content = f.read()
if content.strip():
results.append({
"source": "file",
"filename": filename,
"content": content,
"timestamp": time.strftime("%Y-%m-%d %H:%M:%S")
})
except Exception as e:
logger.error(f"Error reading file {filename}: {str(e)}")
return results
def _process_single_file(self, file) -> List[Dict]:
try:
file_stat = os.stat(file.name)
content = file.read().decode('utf-8', errors='ignore')
return [{
'source': 'file',
'filename': os.path.basename(file.name),
'file_size': file_stat.st_size,
'mime_type': mimetypes.guess_type(file.name)[0],
'created': datetime.fromtimestamp(file_stat.st_ctime).isoformat(),
'modified': datetime.fromtimestamp(file_stat.st_mtime).isoformat(),
'content': content,
'timestamp': datetime.now().isoformat()
}]
except Exception as e:
logger.error(f"File processing error: {e}")
return []
def create_interface():
"""Create a comprehensive Gradio interface with advanced features"""
css = """
.container { max-width: 1200px; margin: auto; }
.warning { background-color: #fff3cd; color: #856404; }
.error { background-color: #f8d7da; color: #721c24; }
"""
with gr.Blocks(css=css, title="Advanced Text & URL Processor") as interface:
gr.Markdown("# 🌐 Advanced URL & Text Processing Toolkit")
with gr.Tab("URL Processing"):
url_input = gr.Textbox(
label="Enter URLs (comma or newline separated)",
lines=5,
placeholder="https://example1.com\nhttps://example2.com"
)
with gr.Tab("File Input"):
file_input = gr.File(
label="Upload text file or ZIP archive",
file_types=[".txt", ".zip", ".md", ".csv", ".json", ".xml"]
)
with gr.Tab("Text Input"):
text_input = gr.Textbox(
label="Raw Text Input",
lines=5,
placeholder="Paste your text here..."
)
process_btn = gr.Button("Process Input", variant="primary")
output_text = gr.Textbox(label="Processing Results", interactive=False)
output_file = gr.File(label="Processed Output")
def process_all_inputs(urls, file, text):
"""Process all input types with progress tracking"""
try:
processor = URLProcessor()
file_processor = FileProcessor()
results = []
# Process URLs
if urls:
url_list = re.split(r'[,\n]', urls)
url_list = [url.strip() for url in url_list if url.strip()]
for url in url_list:
validation = processor.validate_url(url)
if validation.get('is_valid'):
content = processor.fetch_content(url)
if content:
results.append({
'source': 'url',
'url': url,
'content': content,
'timestamp': time.strftime("%Y-%m-%d %H:%M:%S")
})
# Process files
if file:
results.extend(file_processor.process_file(file))
# Process text input
if text:
cleaned_text = processor.advanced_text_cleaning(text)
results.append({
'source': 'direct_input',
'content': cleaned_text,
'timestamp': time.strftime("%Y-%m-%d %H:%M:%S")
})
# Generate output
if results:
output_dir = Path('output') / datetime.now().strftime('%Y-%m-%d')
output_dir.mkdir(parents=True, exist_ok=True)
output_path = output_dir / f'processed_{int(time.time())}.json'
with open(output_path, 'w', encoding='utf-8') as f:
json.dump(results, f, ensure_ascii=False, indent=2)
summary = f"Processed {len(results)} items successfully!"
return output_path, summary
else:
return None, "No valid content to process."
except Exception as e:
logger.error(f"Processing error: {e}")
return None, f"Error: {str(e)}"
process_btn.click(
process_all_inputs,
inputs=[url_input, file_input, text_input],
outputs=[output_file, output_text]
)
gr.Markdown("""
### Usage Guidelines
- **URL Processing**: Enter valid HTTP/HTTPS URLs
- **File Input**: Upload text files or ZIP archives
- **Text Input**: Direct text processing
- Advanced cleaning and validation included
""")
return interface
def main():
# Configure system settings
mimetypes.init()
# Create and launch interface
interface = create_interface()
interface.launch(
share=True,
server_name="0.0.0.0",
server_port=7860,
debug=True
)
if __name__ == "__main__":
main()