urld / app2.py
acecalisto3's picture
Update app2.py
db5b24d verified
raw
history blame
41.3 kB
import json
import os
import re
import logging
import mimetypes
import time
from PIL import Image
import zxing
import io
import zipfile
import tempfile
from datetime import datetime
from typing import List, Dict, Optional, Union
from pathlib import Path
import requests
import validators
import gradio as gr
from bs4 import BeautifulSoup
from fake_useragent import UserAgent
from cleantext import clean
import qrcode# Setup logging
import base64
import io
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - [%(filename)s:%(lineno)d] - %(message)s',
handlers=[
logging.StreamHandler(),
logging.FileHandler('app.log', encoding='utf-8')
]
)
logger = logging.getLogger(__name__)
# Ensure output directories exist
Path('output/qr_codes').mkdir(parents=True, exist_ok=True)
class URLProcessor:
def __init__(self):
self.session = requests.Session()
self.timeout = 10
self.max_retries = 3
self.request_delay = 1.0
self.respect_robots = True
self.use_proxy = False
self.proxy_url = None
self.rate_limits = {} # Track rate limits per domain
self.selenium_driver = None
# Update session headers with rotating user agents
self.update_user_agent()
if self.use_proxy and self.proxy_url:
self.session.proxies = {
'http': self.proxy_url,
'https': self.proxy_url
}
def update_user_agent(self):
"""Rotate user agents to avoid detection"""
try:
self.session.headers.update({
'User-Agent': UserAgent().random,
'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8',
'Accept-Language': 'en-US,en;q=0.5',
'Accept-Encoding': 'gzip, deflate, br',
'Connection': 'keep-alive',
'Upgrade-Insecure-Requests': '1',
'Cache-Control': 'max-age=0'
})
except Exception as e:
logger.warning(f"Failed to update user agent: {e}")
# Fallback to a common user agent
self.session.headers.update({
'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/120.0.0.0 Safari/537.36'
})
def get_selenium_driver(self):
"""Initialize Selenium WebDriver for interactive sites"""
if self.selenium_driver is not None:
return self.selenium_driver
try:
from selenium import webdriver
from selenium.webdriver.chrome.service import Service
from selenium.webdriver.chrome.options import Options
from webdriver_manager.chrome import ChromeDriverManager
options = Options()
options.add_argument("--headless")
options.add_argument("--no-sandbox")
options.add_argument("--disable-dev-shm-usage")
options.add_argument(f"user-agent={self.session.headers['User-Agent']}")
options.add_argument("--disable-notifications")
options.add_argument("--disable-popup-blocking")
options.add_argument("--disable-extensions")
service = Service(ChromeDriverManager().install())
self.selenium_driver = webdriver.Chrome(service=service, options=options)
return self.selenium_driver
except Exception as e:
logger.error(f"Failed to initialize Selenium: {e}")
return None
def handle_rate_limits(self, domain):
"""Smart rate limiting based on domain"""
from urllib.parse import urlparse
import time
# Extract domain from URL
parsed_domain = urlparse(domain).netloc
# Check if we've accessed this domain recently
current_time = time.time()
if parsed_domain in self.rate_limits:
last_access, count = self.rate_limits[parsed_domain]
# Different delay strategies for different domains
if "facebook" in parsed_domain or "instagram" in parsed_domain:
min_delay = 5.0 # Longer delay for social media sites
elif "gov" in parsed_domain:
min_delay = 2.0 # Be respectful with government sites
else:
min_delay = self.request_delay
# Exponential backoff if we're making many requests
if count > 10:
min_delay *= 2
# Wait if needed
elapsed = current_time - last_access
if elapsed < min_delay:
time.sleep(min_delay - elapsed)
# Update count
self.rate_limits[parsed_domain] = (time.time(), count + 1)
else:
# First time accessing this domain
self.rate_limits[parsed_domain] = (current_time, 1)
def handle_interactive_site(self, url):
"""Handle sites that require interaction to bypass blocks"""
driver = self.get_selenium_driver()
if not driver:
return None
try:
driver.get(url)
# Wait for page to load
import time
time.sleep(3)
# Handle different types of sites
if "facebook.com" in url or "instagram.com" in url:
self._handle_social_media_site(driver)
elif "google.com" in url:
self._handle_google_site(driver)
# Get the page source after interaction
page_source = driver.page_source
return {
'content': page_source,
'content_type': 'text/html',
'url': url,
'title': driver.title
}
except Exception as e:
logger.error(f"Error handling interactive site {url}: {e}")
return None
def _handle_social_media_site(self, driver):
"""Handle Facebook/Instagram login walls"""
from selenium.webdriver.common.by import By
from selenium.webdriver.common.keys import Keys
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC
try:
# Try to find and close login popups
close_buttons = driver.find_elements(By.XPATH, "//button[contains(@aria-label, 'Close')]")
if close_buttons:
close_buttons[0].click()
time.sleep(1)
# Press ESC key to dismiss popups
webdriver.ActionChains(driver).send_keys(Keys.ESCAPE).perform()
time.sleep(1)
# Scroll down to load more content
driver.execute_script("window.scrollTo(0, document.body.scrollHeight/2);")
time.sleep(2)
except Exception as e:
logger.warning(f"Error handling social media site: {e}")
def _handle_google_site(self, driver):
"""Handle Google authentication and consent pages"""
from selenium.webdriver.common.by import By
try:
# Look for consent buttons
consent_buttons = driver.find_elements(By.XPATH, "//button[contains(text(), 'Accept all')]")
if consent_buttons:
consent_buttons[0].click()
time.sleep(1)
# Look for "I agree" buttons
agree_buttons = driver.find_elements(By.XPATH, "//button[contains(text(), 'I agree')]")
if agree_buttons:
agree_buttons[0].click()
time.sleep(1)
except Exception as e:
logger.warning(f"Error handling Google site: {e}")
def fetch_content(self, url: str) -> Optional[Dict]:
"""Fetch content with smart handling for different sites"""
# Check if URL is allowed by robots.txt
if self.respect_robots and not self.check_robots_txt(url):
logger.warning(f"URL {url} is disallowed by robots.txt")
return None
# Apply rate limiting
self.handle_rate_limits(url)
# Rotate user agent occasionally
if random.random() < 0.3: # 30% chance to rotate
self.update_user_agent()
# Determine if site needs special handling
needs_selenium = any(domain in url.lower() for domain in [
'facebook.com', 'instagram.com', 'linkedin.com',
'google.com/search', 'twitter.com', 'x.com'
])
for attempt in range(self.max_retries):
try:
if needs_selenium:
return self.handle_interactive_site(url)
# Try with cloudscraper first for sites with anti-bot measures
if any(domain in url.lower() for domain in ['cloudflare', '.gov']):
import cloudscraper
scraper = cloudscraper.create_scraper(
browser={'browser': 'chrome', 'platform': 'darwin', 'mobile': False}
)
response = scraper.get(url, timeout=self.timeout)
else:
# Standard request for most sites
response = self.session.get(url, timeout=self.timeout)
response.raise_for_status()
return {
'content': response.text,
'content_type': response.headers.get('Content-Type', ''),
'url': url,
'status_code': response.status_code
}
except Exception as e:
logger.warning(f"Attempt {attempt + 1} failed for {url}: {e}")
if attempt < self.max_retries - 1:
# Exponential backoff
time.sleep(self.request_delay * (2 ** attempt))
logger.error(f"All attempts failed for {url}")
return None
def check_robots_txt(self, url: str) -> bool:
"""Check if URL is allowed by robots.txt"""
if not self.respect_robots:
return True
try:
from urllib.parse import urlparse
from urllib.robotparser import RobotFileParser
parsed_url = urlparse(url)
robots_url = f"{parsed_url.scheme}://{parsed_url.netloc}/robots.txt"
rp = RobotFileParser()
rp.set_url(robots_url)
rp.read()
return rp.can_fetch(self.session.headers['User-Agent'], url)
except Exception as e:
logger.warning(f"Error checking robots.txt: {e}")
return True
def fetch_content(self, url: str) -> Optional[Dict]:
"""Fetch content with built-in rate limiting and robots.txt checking"""
if not self.check_robots_txt(url):
logger.warning(f"URL {url} is disallowed by robots.txt")
return None
time.sleep(self.request_delay) # Basic rate limiting
for attempt in range(self.max_retries):
try:
if 'drive.google.com' in url:
return self._handle_google_drive(url)
if 'calendar.google.com' in url:
return self._handle_google_calendar(url)
return self._fetch_html_content(url)
except Exception as e:
logger.error(f"Attempt {attempt + 1} failed: {e}")
if attempt < self.max_retries - 1:
time.sleep(self.request_delay * (attempt + 1))
return None
def advanced_text_cleaning(self, text: str) -> str:
"""Robust text cleaning with version compatibility"""
try:
cleaned_text = clean(
text,
fix_unicode=True,
to_ascii=True,
lower=True,
no_line_breaks=True,
no_urls=True,
no_emails=True,
no_phone_numbers=True,
no_numbers=False,
no_digits=False,
no_currency_symbols=True,
no_punct=False
).strip()
return cleaned_text
except Exception as e:
logger.warning(f"Text cleaning error: {e}. Using fallback method.")
text = re.sub(r'[\x00-\x1F\x7F-\x9F]', '', text)
text = text.encode('ascii', 'ignore').decode('ascii')
text = re.sub(r'\s+', ' ', text)
return text.strip()
def validate_url(self, url: str) -> Dict:
"""Validate URL format and accessibility"""
try:
if not validators.url(url):
return {'is_valid': False, 'message': 'Invalid URL format'}
response = self.session.head(url, timeout=self.timeout)
response.raise_for_status()
return {'is_valid': True, 'message': 'URL is valid and accessible'}
except Exception as e:
return {'is_valid': False, 'message': f'URL validation failed: {str(e)}'}
def fetch_content(self, url: str) -> Optional[Dict]:
"""Universal content fetcher with special case handling"""
try:
if 'drive.google.com' in url:
return self._handle_google_drive(url)
if 'calendar.google.com' in url and 'ical' in url:
return self._handle_google_calendar(url)
return self._fetch_html_content(url)
except Exception as e:
logger.error(f"Content fetch failed: {e}")
return None
def _handle_google_drive(self, url: str) -> Optional[Dict]:
"""Process Google Drive file links"""
try:
file_id = re.search(r'/file/d/([a-zA-Z0-9_-]+)', url)
if not file_id:
logger.error(f"Invalid Google Drive URL: {url}")
return None
direct_url = f"https://drive.google.com/uc?export=download&id={file_id.group(1)}"
response = self.session.get(direct_url, timeout=self.timeout)
response.raise_for_status()
return {
'content': response.text,
'content_type': response.headers.get('Content-Type', ''),
'timestamp': datetime.now().isoformat()
}
except Exception as e:
logger.error(f"Google Drive processing failed: {e}")
return None
def _handle_google_calendar(self, url: str) -> Optional[Dict]:
"""Process Google Calendar ICS feeds"""
try:
response = self.session.get(url, timeout=self.timeout)
response.raise_for_status()
return {
'content': response.text,
'content_type': 'text/calendar',
'timestamp': datetime.now().isoformat()
}
except Exception as e:
logger.error(f"Calendar fetch failed: {e}")
return None
def _fetch_html_content(self, url: str) -> Optional[Dict]:
"""Standard HTML content processing"""
try:
response = self.session.get(url, timeout=self.timeout)
response.raise_for_status()
soup = BeautifulSoup(response.text, 'html.parser')
for element in soup(['script', 'style', 'nav', 'footer', 'header', 'meta', 'link']):
element.decompose()
main_content = soup.find('main') or soup.find('article') or soup.body
if main_content is None:
logger.warning(f"No main content found for URL: {url}")
return {
'content': '',
'content_type': response.headers.get('Content-Type', ''),
'timestamp': datetime.now().isoformat()
}
text_content = main_content.get_text(separator='\n', strip=True)
cleaned_content = self.advanced_text_cleaning(text_content)
return {
'content': cleaned_content,
'content_type': response.headers.get('Content-Type', ''),
'timestamp': datetime.now().isoformat()
}
except Exception as e:
logger.error(f"HTML processing failed: {e}")
return None
class FileProcessor:
"""Class to handle file processing"""
def __init__(self, max_file_size: int = 2 * 1024 * 1024 * 1024): # 2GB default
self.max_file_size = max_file_size
self.supported_text_extensions = {'.txt', '.md', '.csv', '.json', '.xml'}
def is_text_file(self, filepath: str) -> bool:
"""Check if file is a text file"""
try:
mime_type, _ = mimetypes.guess_type(filepath)
return (mime_type and mime_type.startswith('text/')) or \
(os.path.splitext(filepath)[1].lower() in self.supported_text_extensions)
except Exception:
return False
def process_file(self, file) -> List[Dict]:
"""Process uploaded file with enhanced error handling"""
if not file:
return []
dataset = []
try:
file_size = os.path.getsize(file.name)
if file_size > self.max_file_size:
logger.warning(f"File size ({file_size} bytes) exceeds maximum allowed size")
return []
with tempfile.TemporaryDirectory() as temp_dir:
if zipfile.is_zipfile(file.name):
dataset.extend(self._process_zip_file(file.name, temp_dir))
else:
dataset.extend(self._process_single_file(file))
except Exception as e:
logger.error(f"Error processing file: {str(e)}")
return []
return dataset
def _process_zip_file(self, zip_path: str, temp_dir: str) -> List[Dict]:
"""Process ZIP file contents"""
results = []
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
zip_ref.extractall(temp_dir)
for root, _, files in os.walk(temp_dir):
for filename in files:
filepath = os.path.join(root, filename)
if self.is_text_file(filepath):
try:
with open(filepath, 'r', encoding='utf-8', errors='ignore') as f:
content = f.read()
if content.strip():
results.append({
"source": "file",
"filename": filename,
"content": content,
"timestamp": datetime.now ().isoformat()
})
except Exception as e:
logger.error(f"Error reading file {filename}: {str(e)}")
return results
def _process_single_file(self, file) -> List[Dict]:
"""Process a single file"""
try:
file_stat = os.stat(file.name)
if file_stat.st_size > 100 * 1024 * 1024: # 100MB
logger.info(f"Processing large file: {file.name} ({file_stat.st_size} bytes)")
content = ""
with open(file.name, 'r', encoding='utf-8', errors='ignore') as f:
content = f.read(1 * 1024 * 1024) # First 1MB
content += "\n...[Content truncated due to large file size]...\n"
f.seek(max(0, file_stat.st_size - 1 * 1024 * 1024))
content += f.read() # Last 1MB
else:
with open(file.name, 'r', encoding='utf-8', errors='ignore') as f:
content = f.read()
return [{
'source': 'file',
'filename': os.path.basename(file.name),
'file_size': file_stat.st_size,
'mime_type': mimetypes.guess_type(file.name)[0],
'created': datetime.fromtimestamp(file_stat.st_ctime).isoformat(),
'modified': datetime.fromtimestamp(file_stat.st_mtime).isoformat(),
'content': content,
'timestamp': datetime.now().isoformat()
}]
except Exception as e:
logger.error(f"File processing error: {e}")
return []
def clean_json(data: Union[str, Dict]) -> Optional[Dict]:
"""Clean and validate JSON data"""
try:
if isinstance(data, str):
data = data.strip()
data = json.loads(data)
cleaned = json.loads(json.dumps(data))
return cleaned
except json.JSONDecodeError as e:
logger.error(f"JSON cleaning error: {e}")
return None
except Exception as e:
logger.error(f"Unexpected error while cleaning JSON: {e}")
return None
def generate_qr(json_data):
data = FileProcessor.clean_json(json_data)
if data:
return FileProcessor.generate_qr_code(data)
return None
if combined:
cleaned_data = clean_json(data)
if cleaned_data:
qr = qrcode.QRCode(
version=None,
error_correction=qrcode.constants.ERROR_CORRECT_L,
box_size=10,
border=4,
)
json_str = json.dumps(cleaned_data, ensure_ascii=False)
qr.add_data(json_str)
qr.make(fit=True)
img = qr.make_image(fill_color="black", back_color="white")
output_path = output_dir / f'combined_qr_{int(time.time())}.png'
img.save(str(output_path))
return [str(output_path)]
else:
if isinstance(data, list):
paths = []
for idx, item in enumerate(data):
cleaned_item = clean_json(item)
if cleaned_item:
qr = qrcode.QRCode(
version=None,
error_correction=qrcode.constants.ERROR_CORRECT_L,
box_size=10,
border=4,
)
json_str = json.dumps(cleaned_item, ensure_ascii=False)
qr.add_data(json_str)
qr.make(fit=True)
img = qrcode.make_image(fill_color="black", back_color="white")
output_path = output_dir / f'item_{idx}_qr_{int(time.time())}.png'
img.save(str(output_path))
paths.append(str(output_path))
return paths
else:
cleaned_item = clean_json(data)
if cleaned_item:
qr = qrcode.QRCode(
version=None,
error_correction=qrcode.constants.ERROR_CORRECT_L,
box_size=10,
border=4,
)
json_str = json.dumps(cleaned_item, ensure_ascii=False)
qr.add_data(json_str)
qr.make(fit=True)
img = qrcode.make_image(fill_color="black", back_color="white")
output_path = output_dir / f'single_qr_{int(time.time())}.png'
img.save(str(output_path))
return [str(output_path)]
return []
except Exception as e:
logger.error(f"QR generation error: {e}")
return []
def decode_qr_code(image_path: str) -> Optional[str]:
"""Decode QR code from an image file using OpenCV with improved binary handling"""
try:
# Read image using OpenCV
img = cv2.imread(image_path)
if img is None:
logger.error(f"Failed to read image: {image_path}")
return None
# Convert to grayscale
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Initialize QRCode detector
detector = cv2.QRCodeDetector()
# Detect and decode
data, vertices, _ = detector.detectAndDecode(gray)
if vertices is not None and data:
# Check if this might be binary data (like a PDF)
if data.startswith("%PDF") or not all(ord(c) < 128 for c in data):
# This is likely binary data, encode as base64
try:
# If it's already a string representation, convert to bytes first
if isinstance(data, str):
data_bytes = data.encode('latin-1') # Use latin-1 to preserve byte values
else:
data_bytes = data
# Encode as base64
base64_data = base64.b64encode(data_bytes).decode('ascii')
return f"base64:{base64_data}"
except Exception as e:
logger.error(f"Error encoding binary data: {e}")
return data
logger.warning("No QR code found in image")
return None
except Exception as e:
logger.error(f"QR decoding error: {e}")
return None
# Also update the datachat_interface function to handle base64 data
def datachat_interface(mode: str, data_source: str, json_input: str, qr_image: str, query: str) -> str:
"""Interface for DataChat functionality with binary data support"""
data = None
if data_source == "JSON Input":
data = json_input
elif data_source == "QR Code":
try:
decoded_data = decode_qr_code(qr_image)
# Handle base64 encoded data
if decoded_data and decoded_data.startswith("base64:"):
base64_part = decoded_data[7:] # Remove the "base64:" prefix
try:
# For PDFs and other binary data, provide info about the content
binary_data = base64.b64decode(base64_part)
if binary_data.startswith(b"%PDF"):
data = "The QR code contains a PDF document. Binary data cannot be processed directly."
else:
# Try to decode as text as a fallback
data = binary_data.decode('utf-8', errors='replace')
except Exception as e:
logger.error(f"Error processing base64 data: {e}")
data = "The QR code contains binary data that cannot be processed directly."
else:
data = decoded_data
if not data:
return "No QR code found in the provided image."
except Exception as e:
return f"Invalid QR code data provided: {e}"
else:
return "No valid data source selected."
if mode == "Trained with Data":
return datachat_trained(data, query)
elif mode == "Chat about Data":
return datachat_simple(data, query)
else:
return "Invalid mode selected."
def create_interface():
"""Create a comprehensive Gradio interface with advanced features"""
css = """
.container { max-width: 1200px; margin: auto; }
.warning { background-color: #fff3cd; color: #856404; padding: 10px; border-radius: 4px; }
.error { background-color: #f8d7da; color: #721c24; padding: 10px; border-radius: 4px; }
.success { background-color: #d4edda; color: #155724; padding: 10px; border-radius: 4px; }
"""
with gr.Blocks(css=css, title="Advanced Data Processor & QR Code Generator") as interface:
gr.Markdown("# 🌐 Advanced Data Processing & QR Code Generator")
# URL Extraction Tab
with gr.Tab("URL Extraction"):
url_input = gr.Textbox(label="URL to Process", placeholder="https://example.com")
depth_slider = gr.Slider(minimum=1, maximum=5, value=1, step=1, label="Crawl Depth (Higher values may affect performance)")
respect_robots = gr.Checkbox(label="Respect robots.txt", value=True)
extract_btn = gr.Button("Extract Content")
url_output = gr.JSON(label="Extracted Data")
download_btn = gr.Button("Download Results as ZIP")
download_output = gr.File(label="Download")
# Warning about depth
gr.Markdown("""
<div class="warning">
⚠️ <strong>Warning:</strong> Higher depth values (>2) may significantly increase processing time and resource usage.
</div>
""")
# URL processor instance
url_processor = URLProcessor()
def process_url(url, depth, respect_robots):
url_processor.respect_robots = respect_robots
results = []
try:
# Validate URL
validation = url_processor.validate_url(url)
if not validation['is_valid']:
return {"error": validation['message']}
# Process with depth
processed_urls = set()
urls_to_process = [(url, 0)] # (url, current_depth)
while urls_to_process:
current_url, current_depth = urls_to_process.pop(0)
if current_url in processed_urls:
continue
processed_urls.add(current_url)
content = url_processor.fetch_content(current_url)
if content:
results.append({
"url": current_url,
"content": content.get('content', ''),
"content_type": content.get('content_type', ''),
"timestamp": datetime.now().isoformat()
})
# If we haven't reached max depth, extract and queue more URLs
if current_depth < depth:
soup = BeautifulSoup(content.get('content', ''), 'html.parser')
for link in soup.find_all('a', href=True):
next_url = link['href']
if next_url.startswith('/'):
# Convert relative URL to absolute
from urllib.parse import urlparse, urljoin
parsed_url = urlparse(current_url)
base_url = f"{parsed_url.scheme}://{parsed_url.netloc}"
next_url = urljoin(base_url, next_url)
if validators.url(next_url) and next_url not in processed_urls:
urls_to_process.append((next_url, current_depth + 1))
return results
except Exception as e:
logger.error(f"URL processing error: {e}")
return {"error": str(e)}
def create_download_zip(results):
if not results or (isinstance(results, dict) and 'error' in results):
return None
try:
# Create a temporary zip file
with tempfile.NamedTemporaryFile(suffix='.zip', delete=False) as tmp:
with zipfile.ZipFile(tmp.name, 'w') as zipf:
# Add JSON data
zipf.writestr('extracted_data.json', json.dumps(results, indent=2))
# Add individual text files for each URL
for idx, item in enumerate(results):
if 'content' in item:
zipf.writestr(f'content_{idx}_{int(time.time())}.txt', item['content'])
return tmp.name
except Exception as e:
logger.error(f"Error creating ZIP file: {e}")
return None
extract_btn.click(process_url, [url_input, depth_slider, respect_robots], url_output)
download_btn.click(create_download_zip, [url_output], download_output)
# ZIP File Extractor Tab
with gr.Tab("ZIP File Extractor"):
zip_file_input = gr.File(label="Upload ZIP File")
extract_zip_btn = gr.Button("Extract and Process")
zip_output = gr.JSON(label="Extracted Data")
zip_qr_btn = gr.Button("Generate QR Code")
zip_qr_output = gr.Image(label="QR Code")
file_processor = FileProcessor()
def process_zip_file(file):
if not file:
return {"error": "No file uploaded"}
try:
results = file_processor.process_file(file)
return results
except Exception as e:
logger.error(f"ZIP processing error: {e}")
return {"error": str(e)}
def generate_zip_qr(data):
if not data or (isinstance(data, dict) and 'error' in data):
return None
try:
return file_processor.generate_qr_code(data, combined=True)[0]
except Exception as e:
logger.error(f"QR generation error: {e}")
return None
extract_zip_btn.click(process_zip_file, [zip_file_input], zip_output)
zip_qr_btn.click(generate_zip_qr, [zip_output], zip_qr_output)
# Raw Text to JSON Tab
with gr.Tab("Text to JSON"):
text_input = gr.Textbox(lines=10, label="Raw Text Input")
json_structure = gr.Dropdown(
choices=["Simple", "Structured", "Key-Value Pairs"],
label="JSON Structure",
value="Simple"
)
convert_btn = gr.Button("Convert to JSON")
json_output = gr.JSON(label="JSON Output")
combine_json_btn = gr.Button("Combine with Previous JSON")
previous_json = gr.Textbox(lines=5, label="Previous JSON (Optional)")
combined_output = gr.JSON(label="Combined JSON")
text_qr_btn = gr.Button("Generate QR Code")
text_qr_output = gr.Image(label="QR Code")
def convert_text_to_json(text, structure):
if not text.strip():
return {"error": "No text provided"}
try:
if structure == "Simple":
return {
"text": text,
"timestamp": datetime.now().isoformat()
}
elif structure == "Structured":
lines = text.split('\n')
paragraphs = []
current_para = []
for line in lines:
if line.strip():
current_para.append(line)
elif current_para:
paragraphs.append(' '.join(current_para))
current_para = []
if current_para:
paragraphs.append(' '.join(current_para))
return {
"title": paragraphs[0] if paragraphs else "",
"paragraphs": paragraphs[1:] if len(paragraphs) > 1 else [],
"timestamp": datetime.now().isoformat()
}
elif structure == "Key-Value Pairs":
pairs = {}
lines = text.split('\n')
for line in lines:
if ':' in line:
key, value = line.split(':', 1)
pairs[key.strip()] = value.strip()
pairs["timestamp"] = datetime.now().isoformat()
return pairs
return {"error": "Invalid structure selected"}
except Exception as e:
logger.error(f"Text to JSON conversion error: {e}")
return {"error": str(e)}
def combine_json_data(current, previous):
if not current or (isinstance(current, dict) and 'error' in current):
return {"error": "No valid current JSON"}
try:
if not previous.strip():
return current
prev_json = json.loads(previous)
# Determine how to combine based on types
if isinstance(prev_json, list) and isinstance(current, list):
return prev_json + current
elif isinstance(prev_json, list):
return prev_json + [current]
elif isinstance(current, list):
return [prev_json] + current
else:
# Both are objects, merge them
combined = {**prev_json, **current}
# Add a combined timestamp
combined["combined_timestamp"] = datetime.now().isoformat()
return combined
except json.JSONDecodeError:
return {"error": "Previous JSON is invalid"}
except Exception as e:
logger.error(f"JSON combination error: {e}")
return {"error": str(e)}
convert_btn.click(convert_text_to_json, [text_input, json_structure], json_output)
combine_json_btn.click(combine_json_data, [json_output, previous_json], combined_output)
text_qr_btn.click(generate_zip_qr, [json_output], text_qr_output)
# DataChat Tab (existing)
with gr.Tab("DataChat"):
mode = gr.Radio(["Trained with Data", "Chat about Data"], label="Mode")
data_source = gr.Radio(["JSON Input", "QR Code"], label="Data Source")
json_input = gr.Textbox(lines=8, label="JSON Data")
qr_image = gr.Image(label="QR Code Image", type="filepath")
query = gr.Textbox(label="Query")
submit_btn = gr.Button("Submit")
output = gr.Textbox(label="Response")
submit_btn.click(datachat_interface, [mode, data_source, json_input, qr_image, query], output)
# QR Generator Tab (existing)
with gr.Tab("QR Generator"):
qr_input = gr.Textbox(lines=8, label="Input JSON for QR")
generate_btn = gr.Button("Generate QR")
qr_output = gr.Image(label="Generated QR Code")
def generate_qr(json_data):
data = file_processor.clean_json(json_data)
if data:
return file_processor.generate_qr_code(data)
return None
generate_btn.click(generate_qr, qr_input, qr_output)
return interface
def main():
mimetypes.init()
Path('output/qr_codes').mkdir(parents=True, exist_ok=True)
# Create and launch the interface
interface = create_interface()
interface.launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True,
share=False,
inbrowser=True,
debug=True
)
if __name__ == "__main__":
main()