Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -14,8 +14,6 @@ import mimetypes
|
|
14 |
from tqdm import tqdm
|
15 |
import logging
|
16 |
import gradio as gr
|
17 |
-
import requests
|
18 |
-
from bs4 import BeautifulSoup
|
19 |
|
20 |
# Setup logging
|
21 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
@@ -23,15 +21,6 @@ logger = logging.getLogger(__name__)
|
|
23 |
|
24 |
# --- URL and File Processing Functions ---
|
25 |
def fetch_content(url, retries=3):
|
26 |
-
"""Fetch content from a given URL with retries on failure.
|
27 |
-
|
28 |
-
Args:
|
29 |
-
url (str): The URL to fetch content from.
|
30 |
-
retries (int): Number of retries in case of failure.
|
31 |
-
|
32 |
-
Returns:
|
33 |
-
str: The HTML content of the page, or None if an error occurred.
|
34 |
-
"""
|
35 |
for attempt in range(retries):
|
36 |
try:
|
37 |
response = requests.get(url, timeout=10)
|
@@ -44,65 +33,46 @@ def fetch_content(url, retries=3):
|
|
44 |
return None
|
45 |
|
46 |
def extract_text(html):
|
47 |
-
"""Extract text from HTML content, removing scripts and styles.
|
48 |
-
|
49 |
-
Args:
|
50 |
-
html (str): The HTML content to extract text from.
|
51 |
-
|
52 |
-
Returns:
|
53 |
-
str: The extracted text, or an empty string if the input is invalid.
|
54 |
-
"""
|
55 |
if not html:
|
56 |
logger.warning("Empty HTML content provided for extraction.")
|
57 |
return ""
|
58 |
|
59 |
soup = BeautifulSoup(html, 'html.parser')
|
60 |
-
|
61 |
-
# Remove script and style elements
|
62 |
for script in soup(["script", "style"]):
|
63 |
script.decompose()
|
64 |
|
65 |
-
# Get text and clean it up
|
66 |
text = soup.get_text()
|
67 |
lines = (line.strip() for line in text.splitlines())
|
68 |
chunks = (phrase.strip() for line in lines for phrase in line.split(" "))
|
69 |
-
|
70 |
-
# Join non-empty chunks
|
71 |
extracted_text = '\n'.join(chunk for chunk in chunks if chunk)
|
72 |
|
73 |
logger.info("Text extraction completed.")
|
74 |
return extracted_text
|
|
|
75 |
def process_urls(urls):
|
76 |
-
"""Process a list of URLs and return their extracted text."""
|
77 |
dataset = []
|
78 |
for url in tqdm(urls, desc="Fetching URLs"):
|
79 |
if not url.startswith("http://") and not url.startswith("https://"):
|
80 |
logger.warning(f"Invalid URL format: {url}")
|
81 |
-
continue
|
82 |
html = fetch_content(url)
|
83 |
if html:
|
84 |
text = extract_text(html)
|
85 |
-
if text:
|
86 |
-
dataset.append({
|
87 |
-
"source": "url",
|
88 |
-
"url": url,
|
89 |
-
"content": text
|
90 |
-
})
|
91 |
else:
|
92 |
logger.warning(f"No text extracted from {url}")
|
93 |
else:
|
94 |
logger.error(f"Failed to fetch content from {url}")
|
95 |
-
time.sleep(1)
|
96 |
return dataset
|
97 |
|
98 |
def process_file(file):
|
99 |
-
"""Process uploaded files (including zip files) and extract text."""
|
100 |
dataset = []
|
101 |
with tempfile.TemporaryDirectory() as temp_dir:
|
102 |
if zipfile.is_zipfile(file.name):
|
103 |
with zipfile.ZipFile(file.name, 'r') as zip_ref:
|
104 |
zip_ref.extractall(temp_dir)
|
105 |
-
# Process each extracted file
|
106 |
for root, _, files in os.walk(temp_dir):
|
107 |
for filename in files:
|
108 |
filepath = os.path.join(root, filename)
|
@@ -110,62 +80,42 @@ def process_file(file):
|
|
110 |
if mime_type and mime_type.startswith('text'):
|
111 |
with open(filepath, 'r', errors='ignore') as f:
|
112 |
content = f.read()
|
113 |
-
if content.strip():
|
114 |
-
dataset.append({
|
115 |
-
"source": "file",
|
116 |
-
"filename": filename,
|
117 |
-
"content": content
|
118 |
-
})
|
119 |
else:
|
120 |
logger.warning(f"File {filename} is empty.")
|
121 |
else:
|
122 |
logger.warning(f"File {filename} is not a text file.")
|
123 |
-
dataset.append({
|
124 |
-
"source": "file",
|
125 |
-
"filename": filename,
|
126 |
-
"content": "Binary file - content not extracted"
|
127 |
-
})
|
128 |
else:
|
129 |
mime_type, _ = mimetypes.guess_type(file.name)
|
130 |
if mime_type and mime_type.startswith('text'):
|
131 |
content = file.read().decode('utf-8', errors='ignore')
|
132 |
-
if content.strip():
|
133 |
-
dataset.append({
|
134 |
-
"source": "file",
|
135 |
-
"filename": os.path.basename(file.name),
|
136 |
-
"content": content
|
137 |
-
})
|
138 |
else:
|
139 |
logger.warning(f"Uploaded file {file.name} is empty.")
|
140 |
else:
|
141 |
logger.warning(f"Uploaded file {file.name} is not a text file.")
|
142 |
-
dataset.append({
|
143 |
-
"source": "file",
|
144 |
-
"filename": os.path.basename(file.name),
|
145 |
-
"content": "Binary file - content not extracted"
|
146 |
-
})
|
147 |
return dataset
|
148 |
|
149 |
def create_dataset(urls, file, text_input):
|
150 |
-
"""Create a combined dataset from URLs, uploaded files, and text input."""
|
151 |
dataset = []
|
152 |
if urls:
|
153 |
dataset.extend(process_urls([url.strip() for url in urls.split(',') if url.strip()]))
|
154 |
if file:
|
155 |
dataset.extend(process_file(file))
|
156 |
if text_input:
|
157 |
-
dataset.
|
158 |
|
159 |
-
# Log the contents of the dataset
|
160 |
logger.info(f"Dataset created with {len(dataset)} entries.")
|
161 |
-
for entry in dataset:
|
162 |
-
logger.debug(f"Entry: {entry}")
|
163 |
-
|
164 |
output_file = 'combined_dataset.json'
|
165 |
with open(output_file, 'w') as f:
|
166 |
json.dump(dataset, f, indent=2)
|
167 |
|
168 |
return output_file
|
|
|
169 |
# --- Model Training and Evaluation Functions ---
|
170 |
class CustomDataset(torch.utils.data.Dataset):
|
171 |
def __init__(self, data, tokenizer, max_length=512):
|
@@ -178,7 +128,7 @@ class CustomDataset(torch.utils.data.Dataset):
|
|
178 |
|
179 |
def __getitem__(self, idx):
|
180 |
try:
|
181 |
-
text = self.data[idx]['content '
|
182 |
label = self.data[idx].get('label', 0)
|
183 |
|
184 |
encoding = self.tokenizer.encode_plus(
|
@@ -208,7 +158,6 @@ def train_model(model_name, data, batch_size, epochs, learning_rate=1e-5, max_le
|
|
208 |
|
209 |
dataset = CustomDataset(data, tokenizer, max_length=max_length)
|
210 |
|
211 |
-
# Check if dataset is empty
|
212 |
if len(dataset) == 0:
|
213 |
logger.error("The dataset is empty. Please check the input data.")
|
214 |
return None, None
|
@@ -222,8 +171,8 @@ def train_model(model_name, data, batch_size, epochs, learning_rate=1e-5, max_le
|
|
222 |
num_train_epochs=epochs,
|
223 |
per_device_train_batch_size=batch_size,
|
224 |
per_device_eval_batch_size=batch_size,
|
225 |
-
eval_strategy='epoch',
|
226 |
-
save_strategy='epoch',
|
227 |
learning_rate=learning_rate,
|
228 |
save_steps=500,
|
229 |
load_best_model_at_end=True,
|
@@ -301,21 +250,16 @@ def deploy_model(model, tokenizer):
|
|
301 |
# Gradio Interface
|
302 |
def gradio_interface(urls, file, text_input, model_name, batch_size, epochs):
|
303 |
try:
|
304 |
-
# Create the dataset from the provided inputs
|
305 |
dataset_file = create_dataset(urls, file, text_input)
|
306 |
|
307 |
-
# Load the dataset
|
308 |
with open(dataset_file, 'r') as f:
|
309 |
dataset = json.load(f)
|
310 |
|
311 |
-
# Check if the dataset is empty
|
312 |
if not dataset:
|
313 |
return "Error: The dataset is empty. Please check your inputs."
|
314 |
|
315 |
-
# Train the model
|
316 |
model, tokenizer = train_model(model_name, dataset, batch_size, epochs)
|
317 |
|
318 |
-
# Deploy the model
|
319 |
deploy_model(model, tokenizer)
|
320 |
|
321 |
return dataset_file
|
@@ -338,7 +282,7 @@ iface = gr.Interface(
|
|
338 |
outputs=gr.File(label="Download Combined Dataset"),
|
339 |
title="Dataset Creation and Model Training",
|
340 |
description="Enter URLs, upload files (including zip files), and/or paste text to create a dataset and train a model.",
|
341 |
-
theme="default",
|
342 |
)
|
343 |
|
344 |
# Launch the interface
|
|
|
14 |
from tqdm import tqdm
|
15 |
import logging
|
16 |
import gradio as gr
|
|
|
|
|
17 |
|
18 |
# Setup logging
|
19 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
|
|
21 |
|
22 |
# --- URL and File Processing Functions ---
|
23 |
def fetch_content(url, retries=3):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
for attempt in range(retries):
|
25 |
try:
|
26 |
response = requests.get(url, timeout=10)
|
|
|
33 |
return None
|
34 |
|
35 |
def extract_text(html):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
if not html:
|
37 |
logger.warning("Empty HTML content provided for extraction.")
|
38 |
return ""
|
39 |
|
40 |
soup = BeautifulSoup(html, 'html.parser')
|
|
|
|
|
41 |
for script in soup(["script", "style"]):
|
42 |
script.decompose()
|
43 |
|
|
|
44 |
text = soup.get_text()
|
45 |
lines = (line.strip() for line in text.splitlines())
|
46 |
chunks = (phrase.strip() for line in lines for phrase in line.split(" "))
|
|
|
|
|
47 |
extracted_text = '\n'.join(chunk for chunk in chunks if chunk)
|
48 |
|
49 |
logger.info("Text extraction completed.")
|
50 |
return extracted_text
|
51 |
+
|
52 |
def process_urls(urls):
|
|
|
53 |
dataset = []
|
54 |
for url in tqdm(urls, desc="Fetching URLs"):
|
55 |
if not url.startswith("http://") and not url.startswith("https://"):
|
56 |
logger.warning(f"Invalid URL format: {url}")
|
57 |
+
continue
|
58 |
html = fetch_content(url)
|
59 |
if html:
|
60 |
text = extract_text(html)
|
61 |
+
if text:
|
62 |
+
dataset.append({"source": "url", "url": url, "content": text})
|
|
|
|
|
|
|
|
|
63 |
else:
|
64 |
logger.warning(f"No text extracted from {url}")
|
65 |
else:
|
66 |
logger.error(f"Failed to fetch content from {url}")
|
67 |
+
time.sleep(1)
|
68 |
return dataset
|
69 |
|
70 |
def process_file(file):
|
|
|
71 |
dataset = []
|
72 |
with tempfile.TemporaryDirectory() as temp_dir:
|
73 |
if zipfile.is_zipfile(file.name):
|
74 |
with zipfile.ZipFile(file.name, 'r') as zip_ref:
|
75 |
zip_ref.extractall(temp_dir)
|
|
|
76 |
for root, _, files in os.walk(temp_dir):
|
77 |
for filename in files:
|
78 |
filepath = os.path.join(root, filename)
|
|
|
80 |
if mime_type and mime_type.startswith('text'):
|
81 |
with open(filepath, 'r', errors='ignore') as f:
|
82 |
content = f.read()
|
83 |
+
if content.strip():
|
84 |
+
dataset.append({"source": "file", "filename": filename, "content": content})
|
|
|
|
|
|
|
|
|
85 |
else:
|
86 |
logger.warning(f"File {filename} is empty.")
|
87 |
else:
|
88 |
logger.warning(f"File {filename} is not a text file.")
|
89 |
+
dataset.append({"source": "file", "filename": filename, "content": "Binary file - content not extracted"})
|
|
|
|
|
|
|
|
|
90 |
else:
|
91 |
mime_type, _ = mimetypes.guess_type(file.name)
|
92 |
if mime_type and mime_type.startswith('text'):
|
93 |
content = file.read().decode('utf-8', errors='ignore')
|
94 |
+
if content.strip():
|
95 |
+
dataset.append({"source": "file", "filename": os.path.basename(file.name), "content": content})
|
|
|
|
|
|
|
|
|
96 |
else:
|
97 |
logger.warning(f"Uploaded file {file.name} is empty.")
|
98 |
else:
|
99 |
logger.warning(f"Uploaded file {file.name} is not a text file.")
|
100 |
+
dataset.append({"source": "file", "filename": os.path.basename(file.name), "content": "Binary file - content not extracted"})
|
|
|
|
|
|
|
|
|
101 |
return dataset
|
102 |
|
103 |
def create_dataset(urls, file, text_input):
|
|
|
104 |
dataset = []
|
105 |
if urls:
|
106 |
dataset.extend(process_urls([url.strip() for url in urls.split(',') if url.strip()]))
|
107 |
if file:
|
108 |
dataset.extend(process_file(file))
|
109 |
if text_input:
|
110 |
+
dataset.append({"source": "input", "content": text_input})
|
111 |
|
|
|
112 |
logger.info(f"Dataset created with {len(dataset)} entries.")
|
|
|
|
|
|
|
113 |
output_file = 'combined_dataset.json'
|
114 |
with open(output_file, 'w') as f:
|
115 |
json.dump(dataset, f, indent=2)
|
116 |
|
117 |
return output_file
|
118 |
+
|
119 |
# --- Model Training and Evaluation Functions ---
|
120 |
class CustomDataset(torch.utils.data.Dataset):
|
121 |
def __init__(self, data, tokenizer, max_length=512):
|
|
|
128 |
|
129 |
def __getitem__(self, idx):
|
130 |
try:
|
131 |
+
text = self.data[idx]['content'] # Fixed the key to 'content'
|
132 |
label = self.data[idx].get('label', 0)
|
133 |
|
134 |
encoding = self.tokenizer.encode_plus(
|
|
|
158 |
|
159 |
dataset = CustomDataset(data, tokenizer, max_length=max_length)
|
160 |
|
|
|
161 |
if len(dataset) == 0:
|
162 |
logger.error("The dataset is empty. Please check the input data.")
|
163 |
return None, None
|
|
|
171 |
num_train_epochs=epochs,
|
172 |
per_device_train_batch_size=batch_size,
|
173 |
per_device_eval_batch_size=batch_size,
|
174 |
+
eval_strategy='epoch',
|
175 |
+
save_strategy='epoch',
|
176 |
learning_rate=learning_rate,
|
177 |
save_steps=500,
|
178 |
load_best_model_at_end=True,
|
|
|
250 |
# Gradio Interface
|
251 |
def gradio_interface(urls, file, text_input, model_name, batch_size, epochs):
|
252 |
try:
|
|
|
253 |
dataset_file = create_dataset(urls, file, text_input)
|
254 |
|
|
|
255 |
with open(dataset_file, 'r') as f:
|
256 |
dataset = json.load(f)
|
257 |
|
|
|
258 |
if not dataset:
|
259 |
return "Error: The dataset is empty. Please check your inputs."
|
260 |
|
|
|
261 |
model, tokenizer = train_model(model_name, dataset, batch_size, epochs)
|
262 |
|
|
|
263 |
deploy_model(model, tokenizer)
|
264 |
|
265 |
return dataset_file
|
|
|
282 |
outputs=gr.File(label="Download Combined Dataset"),
|
283 |
title="Dataset Creation and Model Training",
|
284 |
description="Enter URLs, upload files (including zip files), and/or paste text to create a dataset and train a model.",
|
285 |
+
theme="default",
|
286 |
)
|
287 |
|
288 |
# Launch the interface
|