Spaces:
Running
Running
Create agent.py
Browse files
agent.py
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import datetime
|
2 |
+
from typing import List, Tuple, Dict, Any
|
3 |
+
|
4 |
+
# Constants used in the app
|
5 |
+
PREFIX = """Current Date: {timestamp}
|
6 |
+
Purpose: {purpose}
|
7 |
+
System: You are an advanced AI assistant specialized in data processing and summarization.
|
8 |
+
"""
|
9 |
+
|
10 |
+
COMPRESS_DATA_PROMPT = """You are processing data for summarization and analysis.
|
11 |
+
|
12 |
+
Task Context:
|
13 |
+
- Direction: {direction}
|
14 |
+
- Knowledge: {knowledge}
|
15 |
+
|
16 |
+
Data to Process:
|
17 |
+
{history}
|
18 |
+
|
19 |
+
Instructions:
|
20 |
+
1. Analyze and summarize the data while preserving key information
|
21 |
+
2. Maintain original meaning and important details
|
22 |
+
3. Output should be concise yet comprehensive
|
23 |
+
4. Format as plain text with clear section headers
|
24 |
+
5. Include all critical data points and references
|
25 |
+
|
26 |
+
Output Format:
|
27 |
+
[Summary]
|
28 |
+
- Key points
|
29 |
+
- Important details
|
30 |
+
- Relevant references
|
31 |
+
|
32 |
+
[Analysis]
|
33 |
+
- Insights
|
34 |
+
- Patterns
|
35 |
+
- Conclusions
|
36 |
+
"""
|
37 |
+
|
38 |
+
COMPRESS_DATA_PROMPT_SMALL = """You are processing data chunks for summarization.
|
39 |
+
|
40 |
+
Task Context:
|
41 |
+
- Direction: {direction}
|
42 |
+
|
43 |
+
Current Data Chunk:
|
44 |
+
{history}
|
45 |
+
|
46 |
+
Instructions:
|
47 |
+
1. Extract key information from this chunk
|
48 |
+
2. Format as bullet points
|
49 |
+
3. Keep concise but preserve meaning
|
50 |
+
4. Focus on most relevant content
|
51 |
+
5. Include source references if available
|
52 |
+
|
53 |
+
Output Format:
|
54 |
+
- Point 1
|
55 |
+
- Point 2
|
56 |
+
- ...
|
57 |
+
"""
|
58 |
+
|
59 |
+
LOG_PROMPT = """=== PROMPT ===
|
60 |
+
{content}
|
61 |
+
"""
|
62 |
+
|
63 |
+
LOG_RESPONSE = """=== RESPONSE ===
|
64 |
+
{content}
|
65 |
+
"""
|
66 |
+
|
67 |
+
def run_gpt(
|
68 |
+
prompt_template: str,
|
69 |
+
stop_tokens: List[str],
|
70 |
+
max_tokens: int,
|
71 |
+
seed: int,
|
72 |
+
**prompt_kwargs: Any
|
73 |
+
) -> str:
|
74 |
+
"""Run GPT model with given parameters.
|
75 |
+
|
76 |
+
Args:
|
77 |
+
prompt_template: Template string for the prompt
|
78 |
+
stop_tokens: List of stop sequences
|
79 |
+
max_tokens: Maximum tokens to generate
|
80 |
+
seed: Random seed
|
81 |
+
**prompt_kwargs: Additional formatting arguments
|
82 |
+
|
83 |
+
Returns:
|
84 |
+
Generated text response
|
85 |
+
"""
|
86 |
+
# This would normally interface with the actual model
|
87 |
+
# For now returning a mock implementation
|
88 |
+
return "Mock response for testing purposes"
|
89 |
+
|
90 |
+
def compress_data(
|
91 |
+
c: int,
|
92 |
+
instruct: str,
|
93 |
+
history: str
|
94 |
+
) -> List[str]:
|
95 |
+
"""Compress data into smaller chunks.
|
96 |
+
|
97 |
+
Args:
|
98 |
+
c: Count of data points
|
99 |
+
instruct: Instruction for compression
|
100 |
+
history: Data to compress
|
101 |
+
|
102 |
+
Returns:
|
103 |
+
List of compressed data chunks
|
104 |
+
"""
|
105 |
+
# Mock implementation
|
106 |
+
return ["Compressed data chunk 1", "Compressed data chunk 2"]
|
107 |
+
|
108 |
+
def compress_data_og(
|
109 |
+
c: int,
|
110 |
+
instruct: str,
|
111 |
+
history: str
|
112 |
+
) -> str:
|
113 |
+
"""Original version of data compression.
|
114 |
+
|
115 |
+
Args:
|
116 |
+
c: Count of data points
|
117 |
+
instruct: Instruction for compression
|
118 |
+
history: Data to compress
|
119 |
+
|
120 |
+
Returns:
|
121 |
+
Compressed data as single string
|
122 |
+
"""
|
123 |
+
# Mock implementation
|
124 |
+
return "Compressed data output"
|
125 |
+
|
126 |
+
def save_memory(
|
127 |
+
purpose: str,
|
128 |
+
history: str
|
129 |
+
) -> List[Dict[str, Any]]:
|
130 |
+
"""Save processed data to memory format.
|
131 |
+
|
132 |
+
Args:
|
133 |
+
purpose: Purpose of the processing
|
134 |
+
history: Data to process
|
135 |
+
|
136 |
+
Returns:
|
137 |
+
List of memory dictionaries
|
138 |
+
"""
|
139 |
+
# Mock implementation
|
140 |
+
return [{
|
141 |
+
"keywords": ["sample", "data"],
|
142 |
+
"title": "Sample Entry",
|
143 |
+
"description": "Sample description",
|
144 |
+
"content": "Sample content",
|
145 |
+
"url": "https://example.com"
|
146 |
+
}]
|