Spaces:
Running
Running
Update app2.py
Browse files
app2.py
CHANGED
@@ -1,19 +1,15 @@
|
|
1 |
import gradio as gr
|
2 |
-
#import urllib.request
|
3 |
import requests
|
4 |
import zipfile
|
5 |
import uuid
|
6 |
import bs4
|
7 |
import lxml
|
8 |
import os
|
9 |
-
|
10 |
-
from huggingface_hub import InferenceClient,HfApi
|
11 |
import random
|
12 |
import json
|
13 |
import datetime
|
14 |
from pypdf import PdfReader
|
15 |
-
import uuid
|
16 |
-
#from query import tasks
|
17 |
from agent import (
|
18 |
PREFIX,
|
19 |
COMPRESS_DATA_PROMPT,
|
@@ -21,13 +17,22 @@ from agent import (
|
|
21 |
LOG_PROMPT,
|
22 |
LOG_RESPONSE,
|
23 |
)
|
24 |
-
|
25 |
-
|
26 |
-
)
|
27 |
-
reponame="acecalisto3/tmp"
|
28 |
-
save_data=f'https://huggingface.co/datasets/{reponame}/raw/main/'
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
def find_all(purpose, task, history, url, result, steps):
|
33 |
return_list = []
|
@@ -56,83 +61,43 @@ def find_all(purpose, task, history, url, result, steps):
|
|
56 |
return True, return_list
|
57 |
|
58 |
def read_txt(txt_path):
|
59 |
-
|
60 |
-
with open(txt_path,"r") as f:
|
61 |
text = f.read()
|
62 |
-
f.close()
|
63 |
-
print (text)
|
64 |
return text
|
65 |
|
66 |
def read_pdf(pdf_path):
|
67 |
-
text=""
|
68 |
-
reader = PdfReader(
|
69 |
-
|
70 |
-
for i in range(number_of_pages):
|
71 |
-
page = reader.pages[i]
|
72 |
text = f'{text}\n{page.extract_text()}'
|
73 |
-
print (text)
|
74 |
return text
|
75 |
|
76 |
-
error_box=[]
|
77 |
def read_pdf_online(url):
|
78 |
-
uid=uuid.uuid4()
|
79 |
print(f"reading {url}")
|
80 |
response = requests.get(url, stream=True)
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
#print (out)
|
93 |
-
reader = PdfReader("test.pdf")
|
94 |
-
number_of_pages = len(reader.pages)
|
95 |
-
print(number_of_pages)
|
96 |
-
for i in range(number_of_pages):
|
97 |
-
page = reader.pages[i]
|
98 |
-
text = f'{text}\n{page.extract_text()}'
|
99 |
-
print(f"PDF_TEXT:: {text}")
|
100 |
-
return text
|
101 |
-
else:
|
102 |
-
text = response.status_code
|
103 |
-
error_box.append(url)
|
104 |
-
print(text)
|
105 |
-
return text
|
106 |
-
|
107 |
-
|
108 |
-
except Exception as e:
|
109 |
-
print (e)
|
110 |
-
return e
|
111 |
-
|
112 |
-
|
113 |
-
VERBOSE = True
|
114 |
-
MAX_HISTORY = 100
|
115 |
-
MAX_DATA = 20000
|
116 |
|
117 |
def format_prompt(message, history):
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
def run_gpt(
|
128 |
-
prompt_template,
|
129 |
-
stop_tokens,
|
130 |
-
max_tokens,
|
131 |
-
seed,
|
132 |
-
**prompt_kwargs,
|
133 |
-
):
|
134 |
-
print(seed)
|
135 |
-
timestamp=datetime.datetime.now()
|
136 |
|
137 |
generate_kwargs = dict(
|
138 |
temperature=0.9,
|
@@ -147,48 +112,30 @@ def run_gpt(
|
|
147 |
timestamp=timestamp,
|
148 |
purpose="Compile the provided data and complete the users task"
|
149 |
) + prompt_template.format(**prompt_kwargs)
|
|
|
150 |
if VERBOSE:
|
151 |
print(LOG_PROMPT.format(content))
|
152 |
|
153 |
-
|
154 |
-
#formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history)
|
155 |
-
#formatted_prompt = format_prompt(f'{content}', history)
|
156 |
-
|
157 |
stream = client.text_generation(content, **generate_kwargs, stream=True, details=True, return_full_text=False)
|
158 |
resp = ""
|
159 |
for response in stream:
|
160 |
resp += response.token.text
|
161 |
-
#yield resp
|
162 |
|
163 |
if VERBOSE:
|
164 |
print(LOG_RESPONSE.format(resp))
|
165 |
return resp
|
166 |
|
167 |
-
|
168 |
def compress_data(c, instruct, history):
|
169 |
-
seed=random.randint(1,1000000000)
|
170 |
-
|
171 |
-
|
172 |
-
#tot=len(purpose)
|
173 |
-
#print(tot)
|
174 |
-
divr=int(c)/MAX_DATA
|
175 |
-
divi=int(divr)+1 if divr != int(divr) else int(divr)
|
176 |
chunk = int(int(c)/divr)
|
177 |
-
print(f'chunk:: {chunk}')
|
178 |
-
print(f'divr:: {divr}')
|
179 |
-
print (f'divi:: {divi}')
|
180 |
out = []
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
print(f'e:: {e}')
|
185 |
-
new_history=""
|
186 |
-
#task = f'Compile this data to fulfill the task: {task}, and complete the purpose: {purpose}\n'
|
187 |
for z in range(divi):
|
188 |
-
print(f's:e :: {s}:{e}')
|
189 |
-
|
190 |
hist = history[s:e]
|
191 |
-
|
192 |
resp = run_gpt(
|
193 |
COMPRESS_DATA_PROMPT_SMALL,
|
194 |
stop_tokens=["observation:", "task:", "action:", "thought:"],
|
@@ -199,506 +146,172 @@ def compress_data(c, instruct, history):
|
|
199 |
history=hist,
|
200 |
)
|
201 |
out.append(resp)
|
202 |
-
|
203 |
-
|
204 |
-
#out+=resp
|
205 |
-
e=e+chunk
|
206 |
-
s=s+chunk
|
207 |
return out
|
208 |
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
e=chunk
|
226 |
-
print(f'e:: {e}')
|
227 |
-
new_history=""
|
228 |
-
#task = f'Compile this data to fulfill the task: {task}, and complete the purpose: {purpose}\n'
|
229 |
-
for z in range(divi):
|
230 |
-
print(f's:e :: {s}:{e}')
|
231 |
-
|
232 |
-
hist = history[s:e]
|
233 |
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
)
|
243 |
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
e=e+chunk
|
248 |
-
s=s+chunk
|
249 |
-
'''
|
250 |
-
resp = run_gpt(
|
251 |
-
COMPRESS_DATA_PROMPT,
|
252 |
-
stop_tokens=["observation:", "task:", "action:", "thought:"],
|
253 |
-
max_tokens=8192,
|
254 |
-
seed=seed,
|
255 |
-
direction=instruct,
|
256 |
-
knowledge=new_history,
|
257 |
-
history="All data has been recieved.",
|
258 |
-
)'''
|
259 |
-
print ("final" + resp)
|
260 |
-
#history = "observation: {}\n".format(resp)
|
261 |
-
return resp
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
def summarize(
|
266 |
-
inp: str,
|
267 |
-
history: list,
|
268 |
-
report_check: bool,
|
269 |
-
sum_mem_check: str,
|
270 |
-
data: str = None,
|
271 |
-
files: list = None,
|
272 |
-
url: str = None,
|
273 |
-
pdf_url: str = None,
|
274 |
-
pdf_batch: str = None
|
275 |
-
) -> str:
|
276 |
-
"""
|
277 |
-
Summarizes the provided input data, processes files, URLs, and PDFs, and yields the results.
|
278 |
-
|
279 |
-
Parameters:
|
280 |
-
- inp (str): The input data to be processed. If empty, defaults to "Process this data".
|
281 |
-
- history (list): A list to keep track of the conversation history.
|
282 |
-
- report_check (bool): A flag indicating whether to return a report.
|
283 |
-
- sum_mem_check (str): A string indicating whether to summarize or save memory.
|
284 |
-
- data (str, optional): Additional data to process. Defaults to None.
|
285 |
-
- files (list, optional): A list of file paths to process. Defaults to None.
|
286 |
-
- url (str, optional): A URL to fetch data from. Defaults to None.
|
287 |
-
- pdf_url (str, optional): A URL pointing to a PDF file to read. Defaults to None.
|
288 |
-
- pdf_batch (str, optional): A batch of PDF URLs (comma-separated) to read. Defaults to None.
|
289 |
-
|
290 |
-
Yields:
|
291 |
-
- A tuple containing:
|
292 |
-
- An empty string (for future use).
|
293 |
-
- The updated history list.
|
294 |
-
- An error box (if any errors occurred).
|
295 |
-
- A JSON box for structured output.
|
296 |
-
|
297 |
-
The function processes the input data, reads from specified URLs, PDFs, and files, and summarizes or saves the data based on the provided parameters.
|
298 |
-
"""
|
299 |
-
json_box = []
|
300 |
-
rawp = ""
|
301 |
-
json_out = None
|
302 |
-
|
303 |
-
if inp == "":
|
304 |
-
inp = "Process this data"
|
305 |
-
|
306 |
-
history.clear()
|
307 |
-
history = [(inp, "Working on it...")]
|
308 |
-
yield "", history, error_box, json_box
|
309 |
-
|
310 |
-
# Process PDF batch URLs
|
311 |
-
if pdf_batch and pdf_batch.startswith("http"):
|
312 |
-
c = pdf_batch.count(",") + 1 # Count the number of URLs
|
313 |
-
data = ""
|
314 |
-
try:
|
315 |
-
for i in range(c):
|
316 |
-
batch_url = pdf_batch.split(",", c)[i]
|
317 |
-
bb = read_pdf_online(batch_url)
|
318 |
-
data = f'{data}\nFile Name URL ({batch_url}):\n{bb}'
|
319 |
-
except Exception as e:
|
320 |
-
print(e)
|
321 |
-
|
322 |
-
# Process single PDF URL
|
323 |
-
if pdf_url and pdf_url.startswith("http"):
|
324 |
-
print("PDF_URL")
|
325 |
-
out = read_pdf_online(pdf_url)
|
326 |
-
data = out
|
327 |
-
|
328 |
-
# Process regular URL
|
329 |
-
if url and url.startswith("http"):
|
330 |
-
val, out = find_all(inp, "", history, url, "") # Add missing arguments
|
331 |
-
if not val:
|
332 |
-
data = "Error"
|
333 |
-
rawp = str(out) # Assign rawp here
|
334 |
else:
|
335 |
-
data
|
336 |
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
data = f'{data}\nFile Name ({file}):\n{zz}'
|
346 |
-
elif file.endswith(".txt"):
|
347 |
-
zz = read_txt(file)
|
348 |
-
print(zz)
|
349 |
-
data = f'{data}\nFile Name ({file}):\n{zz}'
|
350 |
-
except Exception as e:
|
351 |
-
data = f'{data}\nError opening File Name ({file})'
|
352 |
-
print(e)
|
353 |
-
|
354 |
-
# Process the collected data
|
355 |
-
if data != "Error" and data != "":
|
356 |
-
print(inp)
|
357 |
-
out = str(data)
|
358 |
-
rl = len(out)
|
359 |
-
print(f'rl:: {rl}')
|
360 |
-
c = sum(1 for i in str(out) if i in [" ", ",", "\n"]) # Count delimiters
|
361 |
-
print(f'c:: {c}')
|
362 |
-
|
363 |
-
if sum_mem_check == "Memory":
|
364 |
-
json_out = save_memory(inp, out)
|
365 |
-
rawp = "Complete" # Assign rawp here
|
366 |
-
|
367 |
-
if sum_mem_check == "Summarize":
|
368 |
-
json_out = compress_data(c, inp, out)
|
369 |
-
out = str(json_out)
|
370 |
-
|
371 |
-
if report_check:
|
372 |
-
rl = len(out)
|
373 |
-
print(f'rl:: {rl}')
|
374 |
-
c = sum(1 for i in str(out) if i in [" ", ",", "\n"]) # Count delimiters
|
375 |
-
print(f'c2:: {c}')
|
376 |
-
rawp = compress_data_og(c, inp, out) # Assign rawp here
|
377 |
else:
|
378 |
-
|
379 |
-
else:
|
380 |
-
rawp = "Provide a valid data source" # Assign rawp here
|
381 |
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
task: {task}
|
388 |
-
Data:
|
389 |
-
{history}
|
390 |
-
Instructions:
|
391 |
-
Compile and categorize the data above into a JSON dictionary string
|
392 |
-
Include ALL text, datapoints, titles, descriptions, and source urls indexed into an easy to search JSON format
|
393 |
-
Your final response should be only the final formatted JSON string enclosed in brackets, and nothing else.
|
394 |
-
Required keys:
|
395 |
-
"keywords":["short", "list", "of", "important", "keywords", "found", "in", "this", "entry"]
|
396 |
-
"title":"title of entry"
|
397 |
-
"description":"A sentence summarizing the topic of this entry"
|
398 |
-
"content":"A brief paragraph summarizing the important datapoints found in this entry"
|
399 |
-
"url":"https://url.source"
|
400 |
-
"""
|
401 |
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
print(f'rl:: {rl}')
|
409 |
-
for i in str(inp):
|
410 |
-
if i == " " or i=="," or i=="\n" or i=="/" or i=="\\" or i=="." or i=="<":
|
411 |
-
c +=1
|
412 |
-
print (f'c:: {c}')
|
413 |
|
414 |
-
|
415 |
-
|
416 |
-
print (c)
|
417 |
-
#tot=len(purpose)
|
418 |
-
#print(tot)
|
419 |
-
divr=int(c)/MAX_DATA
|
420 |
-
divi=int(divr)+1 if divr != int(divr) else int(divr)
|
421 |
-
chunk = int(int(c)/divr)
|
422 |
-
print(f'chunk:: {chunk}')
|
423 |
-
print(f'divr:: {divr}')
|
424 |
-
print (f'divi:: {divi}')
|
425 |
-
out_box = []
|
426 |
-
#out=""
|
427 |
-
s=0
|
428 |
-
ee=chunk
|
429 |
-
print(f'e:: {ee}')
|
430 |
-
new_history=""
|
431 |
-
task = f'Index this Data\n'
|
432 |
-
for z in range(divi):
|
433 |
-
print(f's:e :: {s}:{ee}')
|
434 |
-
|
435 |
-
hist = inp[s:ee]
|
436 |
-
|
437 |
-
resp = run_gpt(
|
438 |
-
SAVE_MEMORY,
|
439 |
-
stop_tokens=["observation:", "task:", "action:", "thought:"],
|
440 |
-
max_tokens=4096,
|
441 |
-
seed=seed,
|
442 |
-
purpose=purpose,
|
443 |
-
task=task,
|
444 |
-
history=hist,
|
445 |
-
).strip('\n')
|
446 |
-
#new_history = resp
|
447 |
-
#print (resp)
|
448 |
-
#out+=resp
|
449 |
-
|
450 |
-
#print ("final1" + resp)
|
451 |
-
try:
|
452 |
-
resp='[{'+resp.split('[{')[1].split('</s>')[0]
|
453 |
-
#print ("final2\n" + resp)
|
454 |
-
#print(f"keywords:: {resp['keywords']}")
|
455 |
-
except Exception as e:
|
456 |
-
resp = resp
|
457 |
-
print(e)
|
458 |
-
timestamp=str(datetime.datetime.now())
|
459 |
-
timename=timestamp.replace(" ","--").replace(":","-").replace(".","-")
|
460 |
-
json_object=resp
|
461 |
-
#json_object = json.dumps(out_box)
|
462 |
-
#json_object = json.dumps(out_box,indent=4)
|
463 |
-
with open(f"tmp-{uid}.json", "w") as outfile:
|
464 |
-
outfile.write(json_object)
|
465 |
-
|
466 |
-
outfile.close()
|
467 |
-
api.upload_file(
|
468 |
-
path_or_fileobj=f"tmp-{uid}.json",
|
469 |
-
path_in_repo=f"/mem-test2/{timename}---{s}-{ee}.json",
|
470 |
-
repo_id=reponame,
|
471 |
-
#repo_id=save_data.split('datasets/',1)[1].split('/raw',1)[0],
|
472 |
-
token=token_self,
|
473 |
-
repo_type="dataset",
|
474 |
-
)
|
475 |
-
lines = resp.strip().strip("\n").split("\n")
|
476 |
-
r = requests.get(f'{save_data}mem-test2/main.json')
|
477 |
-
print(f'status code main:: {r.status_code}')
|
478 |
-
if r.status_code==200:
|
479 |
-
|
480 |
-
lod = json.loads(r.text)
|
481 |
-
#lod = eval(lod)
|
482 |
-
print (f'lod:: {lod}')
|
483 |
-
if not r.status_code==200:
|
484 |
-
lod = []
|
485 |
-
for i,line in enumerate(lines):
|
486 |
-
key_box=[]
|
487 |
-
print(f'LINE:: {line}')
|
488 |
-
if ":" in line:
|
489 |
-
print(f'line:: {line}')
|
490 |
-
|
491 |
-
if "keywords" in line:
|
492 |
-
print(f'trying:: {line}')
|
493 |
-
keyw=line.split(":")[1]
|
494 |
-
print (keyw)
|
495 |
-
print (keyw.split("[")[1].split("]")[0])
|
496 |
-
keyw=keyw.split("[")[1].split("]")[0]
|
497 |
-
for ea in keyw.split(","):
|
498 |
-
s1=""
|
499 |
-
ea=ea.strip().strip("\n")
|
500 |
-
for ev in ea:
|
501 |
-
if ev.isalnum():
|
502 |
-
s1+=ev
|
503 |
-
if ev == " ":
|
504 |
-
s1+=ev
|
505 |
-
#ea=s1
|
506 |
-
print(s1)
|
507 |
-
key_box.append(s1)
|
508 |
-
lod.append({"file_name":f"{timename}---{s}-{ee}","keywords":key_box,"index":f"{s}:{ee}"})
|
509 |
-
json_object = json.dumps(lod, indent=4)
|
510 |
-
with open(f"tmp2-{uid}.json", "w") as outfile2:
|
511 |
-
outfile2.write(json_object)
|
512 |
-
outfile2.close()
|
513 |
-
api.upload_file(
|
514 |
-
path_or_fileobj=f"tmp2-{uid}.json",
|
515 |
-
path_in_repo=f"/mem-test2/main.json",
|
516 |
-
repo_id=reponame,
|
517 |
-
#repo_id=save_data.split('datasets/',1)[1].split('/raw',1)[0],
|
518 |
-
token=token_self,
|
519 |
-
repo_type="dataset",
|
520 |
-
)
|
521 |
-
ee=ee+chunk
|
522 |
-
s=s+chunk
|
523 |
-
out_box.append(resp)
|
524 |
-
return out_box
|
525 |
-
|
526 |
-
def create_zip_file(output_data, zip_name):
|
527 |
-
with zipfile.ZipFile(zip_name, 'w') as zipf:
|
528 |
-
for i, data in enumerate(output_data):
|
529 |
-
zipf.writestr(f'data_{i}.txt', data)
|
530 |
-
return zip_name
|
531 |
|
|
|
|
|
|
|
532 |
|
533 |
-
|
534 |
def clear_fn():
|
535 |
-
return "", [
|
536 |
|
|
|
537 |
with gr.Blocks() as app:
|
538 |
gr.HTML("""<center><h1>Mixtral 8x7B TLDR Summarizer + Web</h1><h3>Summarize Data of unlimited length</h3></center>""")
|
539 |
|
540 |
# Main chat interface
|
541 |
-
|
542 |
-
|
543 |
-
|
544 |
-
|
545 |
-
|
546 |
-
|
547 |
-
task_input = gr.Textbox(label="Task"),
|
548 |
-
history_input = gr.Textbox(label="History"),
|
549 |
-
url_input = gr.Textbox(label="URL"),
|
550 |
-
result_input = gr.Textbox(label="Result"),
|
551 |
-
steps_input = gr.Number(label="Steps", value=3), # Default value of 3 steps
|
552 |
-
output_component = gr.Textbox(label="Output"),
|
553 |
-
button = gr.Button("Search"),
|
554 |
-
)
|
555 |
|
556 |
# Control Panel
|
557 |
with gr.Row():
|
558 |
with gr.Column(scale=3):
|
559 |
prompt = gr.Textbox(
|
560 |
-
label="Instructions
|
561 |
placeholder="Enter processing instructions here..."
|
562 |
)
|
563 |
steps = gr.Slider(
|
564 |
-
label="Crawl Steps",
|
565 |
-
minimum=1,
|
566 |
-
maximum=5,
|
567 |
value=1,
|
568 |
info="Number of levels to crawl for web content"
|
569 |
)
|
570 |
with gr.Column(scale=1):
|
571 |
report_check = gr.Checkbox(
|
572 |
-
label="Return Report",
|
573 |
value=True,
|
574 |
info="Generate detailed analysis report"
|
575 |
)
|
576 |
sum_mem_check = gr.Radio(
|
577 |
-
label="Output Type",
|
578 |
-
choices=["Summary", "Memory"],
|
579 |
value="Summary",
|
580 |
info="Choose between summarized or memory-based output"
|
581 |
)
|
582 |
-
|
583 |
-
|
584 |
-
# Clear button
|
585 |
-
with gr.Row():
|
586 |
-
clear_btn = gr.Button("Clear", variant="secondary")
|
587 |
|
588 |
# Input Tabs
|
589 |
with gr.Tabs() as input_tabs:
|
590 |
with gr.Tab("π Text"):
|
591 |
-
|
592 |
-
label="Input
|
593 |
lines=6,
|
594 |
placeholder="Paste your text here..."
|
595 |
)
|
596 |
with gr.Tab("π File"):
|
597 |
-
|
598 |
label="Upload Files",
|
599 |
file_types=[".pdf", ".txt"],
|
600 |
file_count="multiple"
|
601 |
)
|
602 |
with gr.Tab("π Web URL"):
|
603 |
-
|
604 |
label="Website URL",
|
605 |
placeholder="https://example.com"
|
606 |
)
|
607 |
with gr.Tab("π PDF URL"):
|
608 |
-
|
609 |
label="PDF URL",
|
610 |
placeholder="https://example.com/document.pdf"
|
611 |
)
|
612 |
-
with gr.Tab("π PDF Batch"):
|
613 |
-
pdf_batch = gr.Textbox(
|
614 |
-
label="PDF URLs (comma separated)",
|
615 |
-
placeholder="url1.pdf, url2.pdf, url3.pdf"
|
616 |
-
)
|
617 |
|
618 |
# Output Section
|
619 |
with gr.Row():
|
620 |
with gr.Column():
|
621 |
-
|
622 |
label="Structured Output",
|
623 |
show_label=True
|
624 |
)
|
625 |
with gr.Column():
|
626 |
-
|
627 |
-
label="Status & Errors",
|
628 |
interactive=False
|
629 |
)
|
630 |
-
|
631 |
-
def process_and_format_response(instructions, chat_history, report, summary_memory,
|
632 |
-
input_data, uploaded_files, input_url, pdf_input_url): # Removed extra parameters
|
633 |
-
try:
|
634 |
-
# Process the inputs with reduced parameters
|
635 |
-
result = None
|
636 |
-
for _ in summarize(
|
637 |
-
instructions,
|
638 |
-
chat_history if chat_history else [],
|
639 |
-
report,
|
640 |
-
summary_memory,
|
641 |
-
input_data,
|
642 |
-
uploaded_files,
|
643 |
-
input_url,
|
644 |
-
pdf_input_url # Removed extra parameters
|
645 |
-
):
|
646 |
-
result = _
|
647 |
-
|
648 |
-
if result:
|
649 |
-
_, history, errors, json_data = result
|
650 |
-
|
651 |
-
# Convert history to ChatMessage format
|
652 |
-
formatted_messages = []
|
653 |
-
if isinstance(history, list):
|
654 |
-
for msg in history:
|
655 |
-
if isinstance(msg, tuple) and len(msg) == 2:
|
656 |
-
formatted_messages.extend([
|
657 |
-
gr.ChatMessage(content=str(msg[0]), role="user"),
|
658 |
-
gr.ChatMessage(content=str(msg[1]), role="assistant")
|
659 |
-
])
|
660 |
-
else:
|
661 |
-
formatted_messages.extend([
|
662 |
-
gr.ChatMessage(content=str(instructions), role="user"),
|
663 |
-
gr.ChatMessage(content=str(history), role="assistant")
|
664 |
-
])
|
665 |
-
|
666 |
-
# Format error messages
|
667 |
-
error_message = "\n".join(errors) if errors else "Processing completed successfully"
|
668 |
-
|
669 |
-
return (
|
670 |
-
"", # Clear the prompt
|
671 |
-
formatted_messages,
|
672 |
-
error_message,
|
673 |
-
json_data
|
674 |
-
)
|
675 |
-
except Exception as e:
|
676 |
-
error_msg = f"Error: {str(e)}"
|
677 |
-
return (
|
678 |
-
"",
|
679 |
-
[
|
680 |
-
gr.ChatMessage(content=str(instructions), role="user"),
|
681 |
-
gr.ChatMessage(content=error_msg, role="assistant")
|
682 |
-
],
|
683 |
-
error_msg,
|
684 |
-
None
|
685 |
-
)
|
686 |
-
|
687 |
-
def clear_fn():
|
688 |
-
return "", []
|
689 |
|
690 |
-
#
|
691 |
-
|
692 |
-
|
693 |
inputs=[
|
694 |
-
|
695 |
-
|
696 |
-
|
|
|
|
|
|
|
697 |
url_input,
|
698 |
-
|
699 |
-
steps_input
|
700 |
],
|
701 |
-
outputs=[
|
|
|
|
|
|
|
|
|
|
|
702 |
)
|
703 |
|
704 |
# Launch the app
|
@@ -706,5 +319,5 @@ with gr.Blocks() as app:
|
|
706 |
show_api=False,
|
707 |
share=True,
|
708 |
server_name="0.0.0.0",
|
709 |
-
server_port=
|
710 |
-
)
|
|
|
1 |
import gradio as gr
|
|
|
2 |
import requests
|
3 |
import zipfile
|
4 |
import uuid
|
5 |
import bs4
|
6 |
import lxml
|
7 |
import os
|
8 |
+
from huggingface_hub import InferenceClient, HfApi
|
|
|
9 |
import random
|
10 |
import json
|
11 |
import datetime
|
12 |
from pypdf import PdfReader
|
|
|
|
|
13 |
from agent import (
|
14 |
PREFIX,
|
15 |
COMPRESS_DATA_PROMPT,
|
|
|
17 |
LOG_PROMPT,
|
18 |
LOG_RESPONSE,
|
19 |
)
|
20 |
+
|
21 |
+
# Initialize Hugging Face client
|
22 |
+
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
|
23 |
+
reponame = "acecalisto3/tmp"
|
24 |
+
save_data = f'https://huggingface.co/datasets/{reponame}/raw/main/'
|
25 |
+
|
26 |
+
# Get HF token from environment or use demo mode
|
27 |
+
token_self = os.environ.get('HF_TOKEN', 'dummy_token') # Use dummy token for demo
|
28 |
+
if token_self == 'dummy_token':
|
29 |
+
print("Warning: Running in demo mode without HuggingFace token. Some features may be limited.")
|
30 |
+
api = HfApi(token=token_self)
|
31 |
+
|
32 |
+
# Constants
|
33 |
+
VERBOSE = True
|
34 |
+
MAX_HISTORY = 100
|
35 |
+
MAX_DATA = 20000
|
36 |
|
37 |
def find_all(purpose, task, history, url, result, steps):
|
38 |
return_list = []
|
|
|
61 |
return True, return_list
|
62 |
|
63 |
def read_txt(txt_path):
|
64 |
+
with open(txt_path, "r") as f:
|
|
|
65 |
text = f.read()
|
|
|
|
|
66 |
return text
|
67 |
|
68 |
def read_pdf(pdf_path):
|
69 |
+
text = ""
|
70 |
+
reader = PdfReader(pdf_path)
|
71 |
+
for page in reader.pages:
|
|
|
|
|
72 |
text = f'{text}\n{page.extract_text()}'
|
|
|
73 |
return text
|
74 |
|
75 |
+
error_box = []
|
76 |
def read_pdf_online(url):
|
|
|
77 |
print(f"reading {url}")
|
78 |
response = requests.get(url, stream=True)
|
79 |
+
if response.status_code == 200:
|
80 |
+
with open("test.pdf", "wb") as f:
|
81 |
+
f.write(response.content)
|
82 |
+
reader = PdfReader("test.pdf")
|
83 |
+
text = ""
|
84 |
+
for page in reader.pages:
|
85 |
+
text = f'{text}\n{page.extract_text()}'
|
86 |
+
return text
|
87 |
+
else:
|
88 |
+
error_box.append(url)
|
89 |
+
return str(response.status_code)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
|
91 |
def format_prompt(message, history):
|
92 |
+
prompt = "<s>"
|
93 |
+
for user_prompt, bot_response in history:
|
94 |
+
prompt += f"[INST] {user_prompt} [/INST]"
|
95 |
+
prompt += f" {bot_response}</s> "
|
96 |
+
prompt += f"[INST] {message} [/INST]"
|
97 |
+
return prompt
|
98 |
+
|
99 |
+
def run_gpt(prompt_template, stop_tokens, max_tokens, seed, **prompt_kwargs):
|
100 |
+
timestamp = datetime.datetime.now()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
generate_kwargs = dict(
|
103 |
temperature=0.9,
|
|
|
112 |
timestamp=timestamp,
|
113 |
purpose="Compile the provided data and complete the users task"
|
114 |
) + prompt_template.format(**prompt_kwargs)
|
115 |
+
|
116 |
if VERBOSE:
|
117 |
print(LOG_PROMPT.format(content))
|
118 |
|
|
|
|
|
|
|
|
|
119 |
stream = client.text_generation(content, **generate_kwargs, stream=True, details=True, return_full_text=False)
|
120 |
resp = ""
|
121 |
for response in stream:
|
122 |
resp += response.token.text
|
|
|
123 |
|
124 |
if VERBOSE:
|
125 |
print(LOG_RESPONSE.format(resp))
|
126 |
return resp
|
127 |
|
|
|
128 |
def compress_data(c, instruct, history):
|
129 |
+
seed = random.randint(1, 1000000000)
|
130 |
+
divr = int(c)/MAX_DATA
|
131 |
+
divi = int(divr)+1 if divr != int(divr) else int(divr)
|
|
|
|
|
|
|
|
|
132 |
chunk = int(int(c)/divr)
|
|
|
|
|
|
|
133 |
out = []
|
134 |
+
s = 0
|
135 |
+
e = chunk
|
136 |
+
|
|
|
|
|
|
|
137 |
for z in range(divi):
|
|
|
|
|
138 |
hist = history[s:e]
|
|
|
139 |
resp = run_gpt(
|
140 |
COMPRESS_DATA_PROMPT_SMALL,
|
141 |
stop_tokens=["observation:", "task:", "action:", "thought:"],
|
|
|
146 |
history=hist,
|
147 |
)
|
148 |
out.append(resp)
|
149 |
+
e = e+chunk
|
150 |
+
s = s+chunk
|
|
|
|
|
|
|
151 |
return out
|
152 |
|
153 |
+
def create_zip_file(output_data, zip_name):
|
154 |
+
with zipfile.ZipFile(zip_name, 'w') as zipf:
|
155 |
+
for i, data in enumerate(output_data):
|
156 |
+
zipf.writestr(f'data_{i}.txt', data)
|
157 |
+
return zip_name
|
158 |
+
|
159 |
+
def process_and_format_response(instructions, chat_history, report, summary_memory,
|
160 |
+
input_data, uploaded_files, input_url, pdf_input_url):
|
161 |
+
try:
|
162 |
+
# Process URL if provided
|
163 |
+
if input_url:
|
164 |
+
success, content = find_all("Extract content", "", [], input_url, "", 1)
|
165 |
+
if success and content:
|
166 |
+
processed_text = "\n".join(content)
|
167 |
+
else:
|
168 |
+
return "", [["Error", "Failed to fetch URL content"]], "URL processing failed", None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
169 |
|
170 |
+
# Process uploaded files
|
171 |
+
elif uploaded_files:
|
172 |
+
processed_text = ""
|
173 |
+
for file in uploaded_files:
|
174 |
+
if file.name.endswith('.pdf'):
|
175 |
+
processed_text += read_pdf(file.name) + "\n\n"
|
176 |
+
elif file.name.endswith('.txt'):
|
177 |
+
processed_text += read_txt(file.name) + "\n\n"
|
|
|
178 |
|
179 |
+
# Process direct text input
|
180 |
+
elif input_data:
|
181 |
+
processed_text = input_data
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
182 |
else:
|
183 |
+
return "", [["Error", "No input provided"]], "No input data", None
|
184 |
|
185 |
+
# Generate summary using compress_data
|
186 |
+
if processed_text:
|
187 |
+
c = len(processed_text.split())
|
188 |
+
summary = compress_data(c, instructions or "Summarize this text", processed_text)
|
189 |
+
|
190 |
+
# Format the response
|
191 |
+
if isinstance(summary, list):
|
192 |
+
summary_text = "\n".join(summary)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
193 |
else:
|
194 |
+
summary_text = str(summary)
|
|
|
|
|
195 |
|
196 |
+
# Create chat messages
|
197 |
+
messages = [
|
198 |
+
["Input", processed_text[:500] + "..."], # Show first 500 chars of input
|
199 |
+
["Summary", summary_text]
|
200 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
201 |
|
202 |
+
# Create JSON output
|
203 |
+
json_output = {
|
204 |
+
"input_length": len(processed_text),
|
205 |
+
"summary_length": len(summary_text),
|
206 |
+
"summary": summary_text
|
207 |
+
}
|
|
|
|
|
|
|
|
|
|
|
208 |
|
209 |
+
return "", messages, "Processing completed successfully", json_output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
210 |
|
211 |
+
except Exception as e:
|
212 |
+
error_msg = f"Error: {str(e)}"
|
213 |
+
return "", [["Error", error_msg]], error_msg, None
|
214 |
|
|
|
215 |
def clear_fn():
|
216 |
+
return "", []
|
217 |
|
218 |
+
# Create Gradio interface
|
219 |
with gr.Blocks() as app:
|
220 |
gr.HTML("""<center><h1>Mixtral 8x7B TLDR Summarizer + Web</h1><h3>Summarize Data of unlimited length</h3></center>""")
|
221 |
|
222 |
# Main chat interface
|
223 |
+
with gr.Row():
|
224 |
+
chatbot = gr.Chatbot(
|
225 |
+
label="Mixtral 8x7B Chatbot",
|
226 |
+
show_copy_button=True,
|
227 |
+
height=400
|
228 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
229 |
|
230 |
# Control Panel
|
231 |
with gr.Row():
|
232 |
with gr.Column(scale=3):
|
233 |
prompt = gr.Textbox(
|
234 |
+
label="Instructions",
|
235 |
placeholder="Enter processing instructions here..."
|
236 |
)
|
237 |
steps = gr.Slider(
|
238 |
+
label="Crawl Steps",
|
239 |
+
minimum=1,
|
240 |
+
maximum=5,
|
241 |
value=1,
|
242 |
info="Number of levels to crawl for web content"
|
243 |
)
|
244 |
with gr.Column(scale=1):
|
245 |
report_check = gr.Checkbox(
|
246 |
+
label="Return Report",
|
247 |
value=True,
|
248 |
info="Generate detailed analysis report"
|
249 |
)
|
250 |
sum_mem_check = gr.Radio(
|
251 |
+
label="Output Type",
|
252 |
+
choices=["Summary", "Memory"],
|
253 |
value="Summary",
|
254 |
info="Choose between summarized or memory-based output"
|
255 |
)
|
256 |
+
process_btn = gr.Button("Process", variant="primary")
|
|
|
|
|
|
|
|
|
257 |
|
258 |
# Input Tabs
|
259 |
with gr.Tabs() as input_tabs:
|
260 |
with gr.Tab("π Text"):
|
261 |
+
text_input = gr.Textbox(
|
262 |
+
label="Input Text",
|
263 |
lines=6,
|
264 |
placeholder="Paste your text here..."
|
265 |
)
|
266 |
with gr.Tab("π File"):
|
267 |
+
file_input = gr.File(
|
268 |
label="Upload Files",
|
269 |
file_types=[".pdf", ".txt"],
|
270 |
file_count="multiple"
|
271 |
)
|
272 |
with gr.Tab("π Web URL"):
|
273 |
+
url_input = gr.Textbox(
|
274 |
label="Website URL",
|
275 |
placeholder="https://example.com"
|
276 |
)
|
277 |
with gr.Tab("π PDF URL"):
|
278 |
+
pdf_url_input = gr.Textbox(
|
279 |
label="PDF URL",
|
280 |
placeholder="https://example.com/document.pdf"
|
281 |
)
|
|
|
|
|
|
|
|
|
|
|
282 |
|
283 |
# Output Section
|
284 |
with gr.Row():
|
285 |
with gr.Column():
|
286 |
+
json_output = gr.JSON(
|
287 |
label="Structured Output",
|
288 |
show_label=True
|
289 |
)
|
290 |
with gr.Column():
|
291 |
+
error_output = gr.Textbox(
|
292 |
+
label="Status & Errors",
|
293 |
interactive=False
|
294 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
295 |
|
296 |
+
# Event handlers
|
297 |
+
process_btn.click(
|
298 |
+
process_and_format_response,
|
299 |
inputs=[
|
300 |
+
prompt,
|
301 |
+
chatbot,
|
302 |
+
report_check,
|
303 |
+
sum_mem_check,
|
304 |
+
text_input,
|
305 |
+
file_input,
|
306 |
url_input,
|
307 |
+
pdf_url_input
|
|
|
308 |
],
|
309 |
+
outputs=[
|
310 |
+
prompt,
|
311 |
+
chatbot,
|
312 |
+
error_output,
|
313 |
+
json_output
|
314 |
+
]
|
315 |
)
|
316 |
|
317 |
# Launch the app
|
|
|
319 |
show_api=False,
|
320 |
share=True,
|
321 |
server_name="0.0.0.0",
|
322 |
+
server_port=8000
|
323 |
+
)
|