Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,14 +1,25 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import requests
|
3 |
-
from bs4 import BeautifulSoup
|
4 |
import json
|
5 |
-
import time
|
6 |
-
import zipfile
|
7 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
import tempfile
|
|
|
9 |
import mimetypes
|
10 |
from tqdm import tqdm
|
|
|
|
|
11 |
|
|
|
|
|
|
|
|
|
|
|
12 |
def fetch_content(url):
|
13 |
"""Fetch content from a given URL."""
|
14 |
try:
|
@@ -16,7 +27,7 @@ def fetch_content(url):
|
|
16 |
response.raise_for_status()
|
17 |
return response.text
|
18 |
except requests.RequestException as e:
|
19 |
-
|
20 |
return None
|
21 |
|
22 |
def extract_text(html):
|
@@ -65,7 +76,6 @@ def process_file(file):
|
|
65 |
"content": content
|
66 |
})
|
67 |
else:
|
68 |
-
# For non-text files, just store the filename
|
69 |
dataset.append({
|
70 |
"source": "file",
|
71 |
"filename": filename,
|
@@ -81,7 +91,6 @@ def process_file(file):
|
|
81 |
"content": content
|
82 |
})
|
83 |
else:
|
84 |
-
# For non-text files, just store the filename
|
85 |
dataset.append({
|
86 |
"source": "file",
|
87 |
"filename": os.path.basename(file.name),
|
@@ -106,28 +115,168 @@ def create_dataset(urls, file, text_input):
|
|
106 |
if text_input:
|
107 |
dataset.extend(process_text(text_input))
|
108 |
|
109 |
-
# Save the dataset as JSON
|
110 |
output_file = 'combined_dataset.json'
|
111 |
with open(output_file, 'w') as f:
|
112 |
json.dump(dataset, f, indent=2)
|
113 |
|
114 |
return output_file
|
115 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
# Gradio Interface
|
117 |
-
def gradio_interface(urls, file, text_input):
|
118 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
|
120 |
iface = gr.Interface(
|
121 |
fn=gradio_interface,
|
122 |
inputs=[
|
123 |
gr.Textbox(lines=5, label="Enter comma-separated URLs"),
|
124 |
gr.File(label="Upload file (including zip files)"),
|
125 |
-
gr.Textbox(lines=10, label="Enter or paste large text")
|
|
|
|
|
|
|
126 |
],
|
127 |
outputs=gr.File(label="Download Combined Dataset"),
|
128 |
-
title="
|
129 |
-
description="Enter URLs, upload files (including zip files), and/or paste text to create a
|
130 |
)
|
131 |
|
132 |
# Launch the interface
|
133 |
-
|
|
|
|
|
|
|
|
|
|
1 |
import json
|
|
|
|
|
2 |
import os
|
3 |
+
import torch
|
4 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
5 |
+
from sklearn.metrics import accuracy_score
|
6 |
+
from torch.utils.data import DataLoader
|
7 |
+
from transformers import Trainer, TrainingArguments
|
8 |
+
import time
|
9 |
+
import requests
|
10 |
+
from bs4 import BeautifulSoup
|
11 |
import tempfile
|
12 |
+
import zipfile
|
13 |
import mimetypes
|
14 |
from tqdm import tqdm
|
15 |
+
import logging
|
16 |
+
import gradio as gr
|
17 |
|
18 |
+
# Setup logging
|
19 |
+
logging.basicConfig(level=logging.INFO)
|
20 |
+
logger = logging.getLogger(__name__)
|
21 |
+
|
22 |
+
# --- URL and File Processing Functions ---
|
23 |
def fetch_content(url):
|
24 |
"""Fetch content from a given URL."""
|
25 |
try:
|
|
|
27 |
response.raise_for_status()
|
28 |
return response.text
|
29 |
except requests.RequestException as e:
|
30 |
+
logger.error(f"Error fetching {url}: {e}")
|
31 |
return None
|
32 |
|
33 |
def extract_text(html):
|
|
|
76 |
"content": content
|
77 |
})
|
78 |
else:
|
|
|
79 |
dataset.append({
|
80 |
"source": "file",
|
81 |
"filename": filename,
|
|
|
91 |
"content": content
|
92 |
})
|
93 |
else:
|
|
|
94 |
dataset.append({
|
95 |
"source": "file",
|
96 |
"filename": os.path.basename(file.name),
|
|
|
115 |
if text_input:
|
116 |
dataset.extend(process_text(text_input))
|
117 |
|
|
|
118 |
output_file = 'combined_dataset.json'
|
119 |
with open(output_file, 'w') as f:
|
120 |
json.dump(dataset, f, indent=2)
|
121 |
|
122 |
return output_file
|
123 |
|
124 |
+
# --- Model Training and Evaluation Functions ---
|
125 |
+
class CustomDataset(torch.utils.data.Dataset):
|
126 |
+
def __init__(self, data, tokenizer, max_length=512):
|
127 |
+
self.data = data
|
128 |
+
self.tokenizer = tokenizer
|
129 |
+
self.max_length = max_length
|
130 |
+
|
131 |
+
def __len__(self):
|
132 |
+
return len(self.data)
|
133 |
+
|
134 |
+
def __getitem__(self, idx):
|
135 |
+
try:
|
136 |
+
text = self.data[idx]['content']
|
137 |
+
label = self.data[idx].get('label', 0)
|
138 |
+
|
139 |
+
encoding = self.tokenizer.encode_plus(
|
140 |
+
text,
|
141 |
+
max_length=self.max_length,
|
142 |
+
padding='max_length',
|
143 |
+
truncation=True,
|
144 |
+
return_attention_mask=True,
|
145 |
+
return_tensors='pt',
|
146 |
+
)
|
147 |
+
|
148 |
+
return {
|
149 |
+
'input_ids': encoding['input_ids'].squeeze(),
|
150 |
+
'attention_mask': encoding['attention_mask'].squeeze(),
|
151 |
+
'labels': torch.tensor(label, dtype=torch.long)
|
152 |
+
}
|
153 |
+
except Exception as e:
|
154 |
+
logger.error(f"Error in processing item {idx}: {e}")
|
155 |
+
raise
|
156 |
+
|
157 |
+
def train_model(model_name, data, batch_size, epochs, learning_rate=1e-5, max_length=512):
|
158 |
+
try:
|
159 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
160 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
161 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
162 |
+
model.to(device)
|
163 |
+
|
164 |
+
dataset = CustomDataset(data, tokenizer, max_length=max_length)
|
165 |
+
train_size = int(0.8 * len(dataset))
|
166 |
+
val_size = len(dataset) - train_size
|
167 |
+
train_dataset, val_dataset = torch.utils.data.random_split(dataset, [train_size, val_size])
|
168 |
+
|
169 |
+
training_args = TrainingArguments(
|
170 |
+
output_dir='./results',
|
171 |
+
num_train_epochs=epochs,
|
172 |
+
per_device_train_batch_size=batch_size,
|
173 |
+
per_device_eval_batch_size=batch_size,
|
174 |
+
evaluation_strategy='epoch',
|
175 |
+
learning_rate=learning_rate,
|
176 |
+
save_steps=500,
|
177 |
+
load_best_model_at_end=True,
|
178 |
+
metric_for_best_model='accuracy',
|
179 |
+
greater_is_better=True,
|
180 |
+
save_total_limit=2,
|
181 |
+
seed=42,
|
182 |
+
dataloader_num_workers=4,
|
183 |
+
fp16=torch.cuda.is_available()
|
184 |
+
)
|
185 |
+
|
186 |
+
trainer = Trainer(
|
187 |
+
model=model,
|
188 |
+
args=training_args,
|
189 |
+
train_dataset=train_dataset,
|
190 |
+
eval_dataset=val_dataset,
|
191 |
+
compute_metrics=lambda pred: {
|
192 |
+
'accuracy': accuracy_score(pred.label_ids, pred.predictions.argmax(-1))
|
193 |
+
}
|
194 |
+
)
|
195 |
+
|
196 |
+
logger.info("Starting model training...")
|
197 |
+
start_time = time.time()
|
198 |
+
trainer.train()
|
199 |
+
end_time = time.time()
|
200 |
+
logger.info(f'Training time: {end_time - start_time:.2f} seconds')
|
201 |
+
|
202 |
+
logger.info("Evaluating model...")
|
203 |
+
eval_result = trainer.evaluate()
|
204 |
+
logger.info(f'Evaluation result: {eval_result}')
|
205 |
+
|
206 |
+
trainer.save_model('./model')
|
207 |
+
|
208 |
+
return model, tokenizer
|
209 |
+
|
210 |
+
except Exception as e:
|
211 |
+
logger.error(f"Error during training: {e}")
|
212 |
+
raise
|
213 |
+
|
214 |
+
def deploy_model(model, tokenizer):
|
215 |
+
try:
|
216 |
+
model.save_pretrained('./model')
|
217 |
+
tokenizer.save_pretrained('./model')
|
218 |
+
|
219 |
+
deployment_script = f'''
|
220 |
+
import torch
|
221 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
222 |
+
|
223 |
+
model = AutoModelForSequenceClassification.from_pretrained('./model')
|
224 |
+
tokenizer = AutoTokenizer.from_pretrained('./model')
|
225 |
+
|
226 |
+
def predict(text):
|
227 |
+
encoding = tokenizer.encode_plus(
|
228 |
+
text,
|
229 |
+
max_length=512,
|
230 |
+
padding='max_length',
|
231 |
+
truncation=True,
|
232 |
+
return_attention_mask=True,
|
233 |
+
return_tensors='pt',
|
234 |
+
)
|
235 |
+
|
236 |
+
input_ids = encoding['input_ids'].to('cuda' if torch.cuda.is_available() else 'cpu')
|
237 |
+
attention_mask = encoding['attention_mask'].to('cuda' if torch.cuda.is_available() else 'cpu')
|
238 |
+
outputs = model(input_ids, attention_mask=attention_mask)
|
239 |
+
logits = outputs.logits
|
240 |
+
return torch.argmax(logits, dim=1).cpu().numpy()[0]
|
241 |
+
'''
|
242 |
+
|
243 |
+
with open('./deployment.py', 'w') as f:
|
244 |
+
f.write(deployment_script)
|
245 |
+
|
246 |
+
logger.info('Model deployed successfully. To use the model, run: python deployment.py')
|
247 |
+
|
248 |
+
except Exception as e:
|
249 |
+
logger.error(f"Error deploying model: {e}")
|
250 |
+
raise
|
251 |
+
|
252 |
# Gradio Interface
|
253 |
+
def gradio_interface(urls, file, text_input, model_name, batch_size, epochs):
|
254 |
+
dataset_file = create_dataset(urls, file, text_input)
|
255 |
+
|
256 |
+
with open(dataset_file, 'r') as f:
|
257 |
+
dataset = json.load(f)
|
258 |
+
|
259 |
+
model, tokenizer = train_model(model_name, dataset, batch_size, epochs)
|
260 |
+
|
261 |
+
deploy_model(model, tokenizer)
|
262 |
+
|
263 |
+
return dataset_file
|
264 |
|
265 |
iface = gr.Interface(
|
266 |
fn=gradio_interface,
|
267 |
inputs=[
|
268 |
gr.Textbox(lines=5, label="Enter comma-separated URLs"),
|
269 |
gr.File(label="Upload file (including zip files)"),
|
270 |
+
gr.Textbox(lines=10, label="Enter or paste large text"),
|
271 |
+
gr.Textbox(label="Model name", value="distilbert-base-uncased"),
|
272 |
+
gr.Number(label="Batch size", value=8),
|
273 |
+
gr.Number(label="Epochs", value=3),
|
274 |
],
|
275 |
outputs=gr.File(label="Download Combined Dataset"),
|
276 |
+
title="Dataset Creation and Model Training",
|
277 |
+
description="Enter URLs, upload files (including zip files), and/or paste text to create a dataset and train a model.",
|
278 |
)
|
279 |
|
280 |
# Launch the interface
|
281 |
+
if __name__ == "__main__":
|
282 |
+
iface.launch()
|