import json import os import re import time import logging import mimetypes import tempfile from datetime import datetime from pathlib import Path from urllib.parse import urlparse from typing import List, Dict, Tuple, Union, Optional import requests import validators import gradio as gr from diskcache import Cache from bs4 import BeautifulSoup from fake_useragent import UserAgent from cleantext import clean import qrcode import PyPDF2 from PIL import Image import pytesseract import cv2 import numpy as np import fitz # PyMuPDF import zipfile # Setup logging with detailed configuration logging.basicConfig( level=logging.INFO, format='%(asctime)s - %(levelname)s - [%(filename)s:%(lineno)d] - %(message)s', handlers=[ logging.StreamHandler(), logging.FileHandler('app.log', encoding='utf-8') ] ) logger = logging.getLogger(__name__) class URLProcessor: def __init__(self): self.session = requests.Session() self.timeout = 10 # seconds self.session.headers.update({ 'User-Agent': UserAgent().random, 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8', 'Accept-Language': 'en-US,en;q=0.5', 'Accept-Encoding': 'gzip, deflate, br', 'Connection': 'keep-alive', 'Upgrade-Insecure-Requests': '1' }) self.supported_content_types = { 'text/html': self._fetch_html_content, 'application/pdf': self._fetch_pdf_content, 'image': self._fetch_image_content, 'application/json': self._fetch_json_content, 'text/plain': self._fetch_text_content } def advanced_text_cleaning(self, text: str) -> str: """Robust text cleaning with version compatibility""" try: cleaned_text = clean( text, fix_unicode=True, to_ascii=True, lower=True, no_line_breaks=True, no_urls=True, no_emails=True, no_phone_numbers=True, no_numbers=False, no_digits=False, no_currency_symbols=True, no_punct=False ).strip() return cleaned_text except Exception as e: logger.warning(f"Text cleaning error: {e}. Using fallback method.") text = re.sub(r'[\x00-\x1F\x7F-\x9F]', '', text) # Remove control characters text = text.encode('ascii', 'ignore').decode('ascii') # Remove non-ASCII characters text = re.sub(r'\s+', ' ', text) # Normalize whitespace return text.strip() def validate_url(self, url: str) -> Dict: """Validate URL format and accessibility""" try: if not validators.url(url): return {'is_valid': False, 'message': 'Invalid URL format'} response = self.session.head(url, timeout=self.timeout) response.raise_for_status() return {'is_valid': True, 'message': 'URL is valid and accessible'} except Exception as e: return {'is_valid': False, 'message': f'URL validation failed: {str(e)}'} def fetch_content(self, url: str) -> Optional[Dict]: """Universal content fetcher with enhanced content type handling""" try: # Special case handling if 'drive.google.com' in url: return self._handle_google_drive(url) if 'calendar.google.com' in url and 'ical' in url: return self._handle_google_calendar(url) # Get content type response = self.session.head(url, timeout=self.timeout) content_type = response.headers.get('Content-Type', '').split(';')[0].lower() # Find appropriate handler handler = None for supported_type, type_handler in self.supported_content_types.items(): if content_type.startswith(supported_type): handler = type_handler break if handler: return handler(url) else: logger.warning(f"Unsupported content type: {content_type}") return self._fetch_text_content(url) except Exception as e: logger.error(f"Content fetch failed: {e}") return None def _handle_google_drive(self, url: str) -> Optional[Dict]: """Process Google Drive file links""" try: file_id = re.search(r'/file/d/([a-zA-Z0-9_-]+)', url) if not file_id: logger.error(f"Invalid Google Drive URL: {url}") return None direct_url = f"https://drive.google.com/uc?export=download&id={file_id.group(1)}" response = self.session.get(direct_url, timeout=self.timeout) response.raise_for_status() return { 'content': response.text, 'content_type': response.headers.get('Content-Type', ''), 'timestamp': datetime.now().isoformat() } except Exception as e: logger.error(f"Google Drive processing failed: {e}") return None def _handle_google_calendar(self, url: str) -> Optional[Dict]: """Process Google Calendar ICS feeds""" try: response = self.session.get(url, timeout=self.timeout) response.raise_for_status() return { 'content': response.text, 'content_type': 'text/calendar', 'timestamp': datetime.now().isoformat() } except Exception as e: logger.error(f"Calendar fetch failed: {e}") return None def _fetch_html_content(self, url: str) -> Optional[Dict]: """Enhanced HTML content processing with metadata extraction""" try: response = self.session.get(url, timeout=self.timeout) response.raise_for_status() soup = BeautifulSoup(response.text, 'html.parser') # Remove unwanted elements for element in soup(['script', 'style', 'nav', 'footer', 'header', 'meta', 'link']): element.decompose() # Extract main content main_content = soup.find('main') or soup.find('article') or soup.body # Extract metadata metadata = { 'title': soup.title.string if soup.title else None, 'description': soup.find('meta', {'name': 'description'})['content'] if soup.find('meta', {'name': 'description'}) else None, 'keywords': soup.find('meta', {'name': 'keywords'})['content'] if soup.find('meta', {'name': 'keywords'}) else None, 'author': soup.find('meta', {'name': 'author'})['content'] if soup.find('meta', {'name': 'author'}) else None } # Clean and structure content text_content = main_content.get_text(separator='\n', strip=True) cleaned_content = self.advanced_text_cleaning(text_content) return { 'content': cleaned_content, 'metadata': metadata, 'content_type': response.headers.get('Content-Type', ''), 'timestamp': datetime.now().isoformat() } except Exception as e: logger.error(f"HTML processing failed: {e}") return None def _fetch_pdf_content(self, url: str) -> Optional[Dict]: """Process PDF content with enhanced metadata extraction""" try: response = self.session.get(url, timeout=self.timeout) response.raise_for_status() with tempfile.NamedTemporaryFile(suffix='.pdf') as temp_file: temp_file.write(response.content) temp_file.flush() # Extract text and metadata using PyMuPDF doc = fitz.open(temp_file.name) # Extract text with formatting preservation text = "" metadata = { 'title': doc.metadata.get('title'), 'author': doc.metadata.get('author'), 'subject': doc.metadata.get('subject'), 'keywords': doc.metadata.get('keywords'), 'creator': doc.metadata.get('creator'), 'producer': doc.metadata.get('producer'), 'page_count': len(doc), 'file_size': os.path.getsize(temp_file.name), 'version': doc.version } # Extract text with layout preservation for page in doc: blocks = page.get_text("blocks") for block in blocks: if block[6] == 0: # Text block text += block[4] + "\n" doc.close() cleaned_content = self.advanced_text_cleaning(text) return { 'content': cleaned_content, 'metadata': metadata, 'content_type': 'application/pdf', 'timestamp': datetime.now().isoformat() } except Exception as e: logger.error(f"PDF processing failed: {e}") return None def _fetch_image_content(self, url: str) -> Optional[Dict]: """Process image content with OCR and advanced image processing""" try: response = self.session.get(url, timeout=self.timeout) response.raise_for_status() with tempfile.NamedTemporaryFile(suffix='.jpg') as temp_file: temp_file.write(response.content) temp_file.flush() # Load image with OpenCV img = cv2.imread(temp_file.name) if img is None: raise ValueError("Failed to load image") # Image preprocessing for better OCR gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) denoised = cv2.fastNlMeansDenoising(gray) thresh = cv2.threshold(denoised, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)[1] # Extract text using Tesseract text = pytesseract.image_to_string(thresh) cleaned_text = self.advanced_text_cleaning(text) if text else None # Extract metadata and additional image features with Image.open(temp_file.name) as pil_img: exif = pil_img._getexif() if hasattr(pil_img, '_getexif') else None metadata = { 'format': pil_img.format, 'mode': pil_img.mode, 'size': pil_img.size, 'exif': exif, 'image_features': { 'resolution': img.shape, 'channels': img.shape[2] if len(img.shape) > 2 else 1, 'mean_brightness': np.mean(gray), 'has_text': bool(cleaned_text and cleaned_text.strip()) } } return { 'content': cleaned_text, 'metadata': metadata, 'content_type': response.headers.get('Content-Type', ''), 'timestamp': datetime.now().isoformat() } except Exception as e: logger.error(f"Image processing failed: {e}") return None def _fetch_json_content(self, url: str) -> Optional[Dict]: """Process JSON content""" try: response = self.session.get(url, timeout=self.timeout) response.raise_for_status() content = response.json() return { 'content': json.dumps(content, indent=2), 'content_type': 'application/json', 'timestamp': datetime.now().isoformat() } except Exception as e: logger.error(f"JSON processing failed: {e}") return None def _fetch_text_content(self, url: str) -> Optional[Dict]: """Process plain text content""" try: response = self.session.get(url, timeout=self.timeout) response.raise_for_status() cleaned_content = self.advanced_text_cleaning(response.text) return { 'content': cleaned_content, 'content_type': response.headers.get('Content-Type', ''), 'timestamp': datetime.now().isoformat() } except Exception as e: logger.error(f"Text processing failed: {e}") return None class FileProcessor: """Class to handle file processing""" def __init__(self, max_file_size: int = 2 * 1024 * 1024 * 1024): # 2GB default self.max_file_size = max_file_size self.supported_text_extensions = {'.txt', '.md', '.csv', '.json', '.xml'} def is_text_file(self, filepath: str) -> bool: """Check if file is a text file""" try: mime_type, _ = mimetypes.guess_type(filepath) return (mime_type and mime_type.startswith('text/')) or \ (os.path.splitext(filepath)[1].lower() in self.supported_text_extensions) except Exception: return False def process_file(self, file) -> List[Dict]: """Process uploaded file with enhanced error handling""" if not file: return [] dataset = [] try: file_size = os.path.getsize(file.name) if file_size > self.max_file_size: logger.warning(f"File size ({file_size} bytes) exceeds maximum allowed size") return [] with tempfile.TemporaryDirectory() as temp_dir: if zipfile.is_zipfile(file.name): dataset.extend(self._process_zip_file(file.name, temp_dir)) else: dataset.extend(self._process_single_file(file)) except Exception as e: logger.error(f"Error processing file: {str(e)}") return [] return dataset def _process_zip_file(self, zip_path: str, temp_dir: str) -> List[Dict]: """Process ZIP file contents""" results = [] with zipfile.ZipFile(zip_path, 'r') as zip_ref: zip_ref.extractall(temp_dir) for root, _, files in os.walk(temp_dir): for filename in files: filepath = os.path.join(root, filename) if self.is_text_file(filepath): try: with open(filepath, 'r', encoding='utf-8', errors='ignore') as f: content = f.read() if content.strip(): results.append({ "source": "file", "filename": filename, "content": content, "timestamp": datetime.now().isoformat() }) except Exception as e: logger.error(f"Error reading file {filename}: {str(e)}") return results def _process_single_file(self, file) -> List[Dict]: try: file_stat = os.stat(file.name) # For very large files, read in chunks and summarize if file_stat.st_size > 100 * 1024 * 1024: # 100MB logger.info(f"Processing large file: {file.name} ({file_stat.st_size} bytes)") # Read first and last 1MB for extremely large files content = "" with open(file.name, 'r', encoding='utf-8', errors='ignore') as f: content = f.read(1 * 1024 * 1024) # First 1MB content += "\n...[Content truncated due to large file size]...\n" # Seek to the last 1MB f.seek(max(0, file_stat.st_size - 1 * 1024 * 1024)) content += f.read() # Last 1MB else: # Regular file processing with open(file.name, 'r', encoding='utf-8', errors='ignore') as f: content = f.read() return [{ 'source': 'file', 'filename': os.path.basename(file.name), 'file_size': file_stat.st_size, 'mime_type': mimetypes.guess_type(file.name)[0], 'created': datetime.fromtimestamp(file_stat.st_ctime).isoformat(), 'modified': datetime.fromtimestamp(file_stat.st_mtime).isoformat(), 'content': content, 'timestamp': datetime.now().isoformat() }] except Exception as e: logger.error(f"File processing error: {e}") return [] def generate_qr_code(json_data): """Generate a QR code from JSON data.""" qr = qrcode.make(json_data) qr_path = "output/qr_code.png" qr.save(qr_path) return qr_path def create_interface(): """Create a comprehensive Gradio interface with advanced features""" css = """ .container { max-width: 1200px; margin: auto; } .warning { background-color: #fff3cd; color: #856404; } .error { background-color: #f8d7da; color: #721c24; } """ with gr.Blocks(css=css, title="Advanced Text & URL Processor") as interface: gr.Markdown("# 🌐 Advanced URL & Text Processing Toolkit") with gr.Tab("URL Processing"): url_input = gr.Textbox( label="Enter URLs (comma or newline separated)", lines=5, placeholder="https://example1.com\nhttps://example2.com" ) with gr.Tab("File Input"): file_input = gr.File( label="Upload text file or ZIP archive", file_types=[".txt", ".zip", ".md", ".csv", ".json", ".xml"] ) with gr.Tab("Text Input"): text_input = gr.Textbox( label="Raw Text Input", lines=5, placeholder="Paste your text here..." ) with gr.Tab("JSON Editor"): json_editor = gr.Textbox( label="JSON Editor", lines=20, placeholder="View and edit your JSON data here...", interactive=True, elem_id="json-editor" # Optional: for custom styling ) with gr.Tab("Scratchpad"): scratchpad = gr.Textbox( label="Scratchpad", lines=10, placeholder="Quick notes or text collections...", interactive=True ) process_btn = gr.Button("Process Input", variant="primary") qr_btn = gr.Button("Generate QR Code", variant="secondary") output_text = gr.Textbox(label="Processing Results", interactive=False) output_file = gr.File(label="Processed Output") qr_output = gr.Image(label="QR Code", type="filepath") # To display the generated QR code def process_all_inputs(urls, file, text, notes): """Process all input types with progress tracking""" try: processor = URLProcessor() file_processor = FileProcessor() results = [] # Process URLs if urls: url_list = re.split(r'[,\n]', urls) url_list = [url.strip() for url in url_list if url.strip()] for url in url_list: validation = processor.validate_url(url) if validation.get('is_valid'): content = processor.fetch_content(url) if content: results.append({ 'source': 'url', 'url': url, 'content': content, 'timestamp': datetime.now().isoformat() }) # Process files if file: results.extend(file_processor.process_file(file)) # Process text input if text: cleaned_text = processor.advanced_text_cleaning(text) results.append({ 'source': 'direct_input', 'content': cleaned_text, 'timestamp': datetime.now().isoformat() }) # Generate output if results: output_dir = Path('output') / datetime.now().strftime('%Y-%m-%d') output_dir.mkdir(parents=True, exist_ok=True) output_path = output_dir / f'processed_{int(time.time())}.json' with open(output_path, 'w', encoding='utf-8') as f: json.dump(results, f, ensure_ascii=False, indent=2) summary = f"Processed {len(results)} items successfully!" json_data = json.dumps(results, indent=2) # Prepare JSON for QR code return str(output_path), summary, json_data # Return JSON for editor else: return None, "No valid content to process.", "" except Exception as e: logger.error(f"Processing error: {e}") return None, f"Error: {str(e)}", "" def generate_qr(json_data): """Generate QR code from JSON data and return the file path.""" if json_data: return generate_qr_code(json_data) return None process_btn.click( process_all_inputs, inputs=[url_input, file_input, text_input, scratchpad], outputs=[output_file, output_text, json_editor] # Update outputs to include JSON editor ) qr_btn.click( generate_qr, inputs=json_editor, outputs=qr_output ) gr.Markdown(""" ### Usage Guidelines - **URL Processing**: Enter valid HTTP/HTTPS URLs - **File Input**: Upload text files or ZIP archives - **Text Input**: Direct text processing - **JSON Editor**: View and edit your JSON data - **Scratchpad**: Quick notes or text collections - Advanced cleaning and validation included """) return interface def main(): # Configure system settings mimetypes.init() # Create and launch interface interface = create_interface() # Launch with proper configuration interface.launch( server_name="0.0.0.0", server_port=7860, show_error=True, share=False, inbrowser=True, debug=True ) if __name__ == "__main__": main()