File size: 7,176 Bytes
1e83e3d
cb93205
 
1e83e3d
cb93205
8f86068
1e83e3d
cb93205
 
1e83e3d
cb93205
1e83e3d
cb93205
 
8f86068
1e83e3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f86068
 
1e83e3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f86068
1e83e3d
 
 
8f86068
 
cb93205
 
 
 
 
8f86068
 
 
 
 
 
cb93205
8f86068
 
 
 
cb93205
 
8f86068
 
 
 
 
cb93205
8f86068
 
cb93205
8f86068
 
cb93205
 
 
1e83e3d
8f86068
cb93205
8f86068
1e83e3d
cb93205
1e83e3d
8f86068
 
 
 
1e83e3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f86068
cb93205
8f86068
a5ef230
8f86068
 
cb93205
 
 
a5ef230
 
 
 
 
 
 
 
8f86068
 
a5ef230
 
 
 
 
 
 
 
cb93205
8f86068
a5ef230
cb93205
 
 
 
a5ef230
 
 
 
 
8f86068
1e83e3d
 
 
 
 
 
 
8f86068
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import json
import logging
import os
from functools import partial

import gradio as gr
from datasets import Dataset, load_dataset
from dotenv import load_dotenv

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)

load_dotenv()

# dataset = load_dataset("detection-datasets/coco")
it_dataset = load_dataset(
    "imagenet-1k", split="train", streaming=True, trust_remote_code=True
).shuffle(42)


def gen_from_iterable_dataset(iterable_ds):
    """
    Convert an iterable dataset to a generator
    """
    yield from iterable_ds


# imagenet_categories_data.json is a JSON file containing a hierarchy of ImageNet categories.
# We want to take all categories under "artifact, artefact".
# Each node has this structure:
# {
#     "id": 1,
#     "name": "entity",
#     "children": ...
# }
with open("imagenet_categories_data.json") as f:
    data = json.load(f)

    # Recursively find all categories under "artifact, artefact".
    # We want to get all the "index" values of the leaf nodes. Nodes that are not leaf nodes have a "children" key.
    def find_categories(node):
        if "children" in node:
            for child in node["children"]:
                yield from find_categories(child)
        elif "index" in node:
            yield node["index"]

    broad_categories = data["children"]
    artifact_category = next(
        filter(lambda x: x["name"] == "artifact, artefact", broad_categories)
    )
    artifact_categories = list(find_categories(artifact_category))
    logger.info(f"Artifact categories: {artifact_categories}")


def filter_imgs_by_label(x):
    """
    Filter out the images that have label -1
    """
    print(f'label: {x["label"]}')
    return x["label"] in artifact_categories


dataset = it_dataset.take(1000).filter(filter_imgs_by_label)
dataset = Dataset.from_generator(
    partial(gen_from_iterable_dataset, it_dataset), features=it_dataset.features
)
dataset_iterable = iter(dataset)


def get_user_prompt():
    # Pick the first 3 images and labels
    images = []
    machine_labels = []
    human_labels = []
    for i in range(3):
        data = next(dataset_iterable)
        logger.info(f"Data: {data}")
        images.append(data["image"])
        # Get the label as a human readable string
        machine_labels.append(data["label"])
        logger.info(dataset)
        human_label = dataset.features["label"].int2str(data["label"]) + str(
            data["label"]
        )
        human_labels.append(human_label)
    return {
        "images": images,
        "machine_labels": machine_labels,
        "human_labels": human_labels,
    }


hf_writer = gr.HuggingFaceDatasetSaver(
    hf_token=os.environ["HF_TOKEN"], dataset_name="acmc/maker-faire-bot", private=True
)
csv_writer = gr.CSVLogger(simplify_file_data=True)

theme = gr.themes.Default(primary_hue="cyan", secondary_hue="fuchsia")

with gr.Blocks(theme=theme) as demo:
    with gr.Row() as header:
        gr.Image(
            "maker-faire-logo.webp",
            show_download_button=False,
            show_label=False,
            show_share_button=False,
            container=False,
            # height=100,
            scale=0.2,
        )
        gr.Markdown(
            """
            # Maker Faire Bot
            """,
            visible=False,
        )

    user_prompt = gr.State(get_user_prompt())

    gr.Markdown("""# Think about these objects...""")
    gr.Markdown(
        """We want to teach the Maker Faire Bot some creativity. Help us get ideas on what you'd build!"""
    )
    image_components = []
    with gr.Row(variant="panel") as row:
        for i in range(len(user_prompt.value["images"])):
            with gr.Column(variant="default") as col:
                img = gr.Image(
                    user_prompt.value["images"][i],
                    label=user_prompt.value["human_labels"][i],
                    interactive=False,
                    show_download_button=False,
                    show_share_button=False,
                )
                image_components.append(img)
                btn = gr.Button("Change", variant="secondary")

                def change_image(user_prompt):
                    data = next(dataset_iterable)
                    logger.info(user_prompt)
                    user_prompt = user_prompt.copy()
                    user_prompt["images"][i] = data["image"]
                    user_prompt["machine_labels"][i] = data["label"]
                    user_prompt["human_labels"][i] = dataset.features["label"].int2str(
                        data["label"]
                    )
                    logger.info(user_prompt)
                    return (
                        user_prompt,
                        user_prompt["images"][i],
                        gr.update(
                            label=user_prompt["human_labels"][i],
                        ),
                    )

                btn.click(
                    change_image,
                    inputs=[user_prompt],
                    outputs=[user_prompt, img, img],
                    preprocess=True,
                    postprocess=True,
                )

    user_answer_object = gr.Textbox(
        autofocus=True,
        placeholder="(example): An digital electronic guitar",
        label="What would you build?",
    )
    user_answer_explanation = gr.TextArea(
        autofocus=True,
        label="How would you build it?",
        # The example uses a roll of string, a camera, and a loudspeaker to build an electronic guitar.
        placeholder="""To build an electronic guitar, I would:
1. Use the roll of string to create the strings of the guitar.
2. Use the camera to capture a live video of the hand movements. That way, I can use an AI model to predict the chords.
3. Using a computer vision model, identify where the fingers are placed on the strings.
4. Calculate the sounds that the loudspeaker should produce based on the finger placements.
5. Play the sound through the loudspeaker.
""",
    )

    csv_writer.setup(
        components=[user_prompt, user_answer_object, user_answer_explanation],
        flagging_dir="user_data_csv",
    )
    hf_writer.setup(
        components=[user_prompt, user_answer_object, user_answer_explanation],
        flagging_dir="user_data_hf",
    )

    submit_btn = gr.Button("Submit", variant="primary")

    def log_results(prompt, object, explanation):
        csv_writer.flag([prompt, object, explanation])
        hf_writer.flag([prompt, object, explanation])

    submit_btn.click(
        log_results,
        inputs=[user_prompt, user_answer_object, user_answer_explanation],
        preprocess=False,
    )

    new_prompt_btn = gr.Button("New Prompt", variant="secondary")
    new_prompt_btn.click(
        get_user_prompt,
        outputs=[user_prompt],
        preprocess=False,
    )

    gr.Markdown(
        """
        This is an experimental project. Your data is anonymous and will be used to train an AI model. By using this tool, you agree to our [policy](https://makerfaire.com/privacy).
        """
    )

if __name__ == "__main__":
    demo.launch()