ACMCMC commited on
Commit
7b2eb9e
·
1 Parent(s): 420942b
Files changed (3) hide show
  1. .gitignore +2 -0
  2. app.py +36 -26
  3. requirements.txt +3 -1
.gitignore ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ .venv/
2
+ .vscode/
app.py CHANGED
@@ -1,52 +1,62 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
 
10
  def respond(
11
  message,
12
  history: list[tuple[str, str]],
13
  system_message,
 
 
14
  max_tokens,
15
  temperature,
16
  top_p,
17
  ):
 
18
  messages = [{"role": "system", "content": system_message}]
19
-
20
  for val in history:
21
  if val[0]:
22
  messages.append({"role": "user", "content": val[0]})
23
  if val[1]:
24
  messages.append({"role": "assistant", "content": val[1]})
25
-
26
  messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
 
 
 
 
 
 
 
 
 
 
 
 
 
41
 
42
 
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
  demo = gr.ChatInterface(
47
  respond,
48
  additional_inputs=[
49
  gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
 
 
50
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
  gr.Slider(
 
1
  import gradio as gr
2
+ import requests
3
+ import json
 
 
 
 
 
4
 
5
  def respond(
6
  message,
7
  history: list[tuple[str, str]],
8
  system_message,
9
+ access_token,
10
+ model_endpoint,
11
  max_tokens,
12
  temperature,
13
  top_p,
14
  ):
15
+ # Build conversation history
16
  messages = [{"role": "system", "content": system_message}]
17
+
18
  for val in history:
19
  if val[0]:
20
  messages.append({"role": "user", "content": val[0]})
21
  if val[1]:
22
  messages.append({"role": "assistant", "content": val[1]})
23
+
24
  messages.append({"role": "user", "content": message})
25
+
26
+ # Vertex AI API request
27
+ headers = {
28
+ "Authorization": f"Bearer {access_token}",
29
+ "Content-Type": "application/json"
30
+ }
31
+
32
+ payload = {
33
+ "instances": [{
34
+ "messages": messages,
35
+ "max_tokens": max_tokens,
36
+ "temperature": temperature,
37
+ "top_p": top_p
38
+ }]
39
+ }
40
+
41
+ try:
42
+ response = requests.post(model_endpoint, headers=headers, json=payload)
43
+ response.raise_for_status()
44
+
45
+ result = response.json()
46
+ # Extract response text from Vertex AI response format
47
+ generated_text = result["predictions"][0]["content"]
48
+ yield generated_text
49
+
50
+ except Exception as e:
51
+ yield f"Error: {str(e)}"
52
 
53
 
 
 
 
54
  demo = gr.ChatInterface(
55
  respond,
56
  additional_inputs=[
57
  gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
58
+ gr.Textbox(value="", label="Google Cloud Access Token", type="password"),
59
+ gr.Textbox(value="", label="Vertex AI Model Endpoint URL", placeholder="https://us-central1-aiplatform.googleapis.com/v1/projects/YOUR_PROJECT/locations/us-central1/endpoints/YOUR_ENDPOINT:predict"),
60
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
61
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
62
  gr.Slider(
requirements.txt CHANGED
@@ -1 +1,3 @@
1
- huggingface_hub==0.25.2
 
 
 
1
+ gradio
2
+ google-cloud-aiplatform
3
+ requests