import gradio as gr import requests import json def respond( message, history: list[tuple[str, str]], system_message, access_token, model_endpoint, max_tokens, temperature, top_p, ): # Build conversation history messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) # Vertex AI API request headers = { "Authorization": f"Bearer {access_token}", "Content-Type": "application/json" } payload = { "instances": [{ "messages": messages, "max_tokens": max_tokens, "temperature": temperature, "top_p": top_p }] } try: response = requests.post(model_endpoint, headers=headers, json=payload) response.raise_for_status() result = response.json() # Extract response text from Vertex AI response format generated_text = result["predictions"][0]["content"] yield generated_text except Exception as e: yield f"Error: {str(e)}" demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Textbox(value="", label="Google Cloud Access Token", type="password"), gr.Textbox(value="", label="Vertex AI Model Endpoint URL", placeholder="https://us-central1-aiplatform.googleapis.com/v1/projects/YOUR_PROJECT/locations/us-central1/endpoints/YOUR_ENDPOINT:predict"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()