adamNLP commited on
Commit
2c5ad51
Β·
verified Β·
1 Parent(s): c27b3fb

Upload food not food text classifier demo from notebook

Browse files
Files changed (3) hide show
  1. README.md +10 -5
  2. app.py +45 -0
  3. requirements.txt +3 -0
README.md CHANGED
@@ -1,12 +1,17 @@
1
  ---
2
- title: Hf Food Not Food Text Classifier With Distilbert Demo
3
- emoji: πŸ“Š
4
- colorFrom: pink
5
- colorTo: purple
6
  sdk: gradio
7
  sdk_version: 5.4.0
8
  app_file: app.py
9
  pinned: false
 
10
  ---
 
 
 
 
 
11
 
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
  ---
2
+ title: Food Not Food Text Classifier
3
+ emoji: πŸ•πŸš«πŸ”
4
+ colorFrom: blue
5
+ colorTo: yellow
6
  sdk: gradio
7
  sdk_version: 5.4.0
8
  app_file: app.py
9
  pinned: false
10
+ license: apache-2.0
11
  ---
12
+ # πŸ•πŸš«πŸ” Food Not Food Text Classifier
13
+
14
+ Demo to showcase a text classifier to determine if a sentence is about food or not food.
15
+
16
+ DistilBERT model fine-tuned on a small synthetic dataset of [250 generated food/not_food image captions](https://huggingface.co/datasets/mrdbourke/learn_hf_food_not_food_image_captions)
17
 
 
app.py ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # 1. Import required packages
2
+ import torch
3
+ import gradio as gr
4
+
5
+ from typing import Dict
6
+ from transformers import pipeline
7
+
8
+ # 2. Define our function to use with our model.
9
+ def food_not_food_classifier(text: str) -> Dict[str, float]:
10
+ # 2. Setup food not food text classifier
11
+ food_not_food_classifier_pipeline = pipeline(task="text-classification",
12
+ model="adamNLP/learn_hf_food_not_food_text_classifier-distilbert-base-uncased"
13
+ batch_size=32,
14
+ device="cuda" if torch.cuda.is_available() else "cpu",
15
+ top_k=None) # top_k=None => return all possible labels
16
+ # 3. get outputs from pipeline
17
+ outputs = food_not_food_classifier_pipeline(text)[0]
18
+
19
+ # 4. Format output for Gradio
20
+ output_dict = {}
21
+ for item in outputs:
22
+ output_dict[item["label"]] = item["score"]
23
+
24
+ return output_dict
25
+
26
+ # 3. Create a Gradio interface -- we can use markdown text to create a description field
27
+ description = """
28
+ A text classifier to determine if a sentence is about food or not food.
29
+
30
+ Fine-tuned from [DistilBERT](https://huggingface.co/distilbert/distilbert-base-uncased) a [dataset of LLM generated food/not_food image captions](https://huggingface.co/datasets/mrdbourke/learn_hf_food_not_food_image_captions)
31
+ """
32
+
33
+ ## create demo
34
+ demo = gr.Interface(
35
+ fn=food_not_food_classifier,
36
+ inputs="text",
37
+ outputs=gr.Label(num_top_classes=2),
38
+ title="πŸ•πŸš«πŸ₯‘ Food or Not Food Text Classifier",
39
+ description=description,
40
+ examples=[["I whipped up a fresh batch of code, but it seems to have syntax error"],
41
+ ["A plate of waffles and bluberry syrup"]]
42
+ )
43
+ # 4. Launch interface -- def Main function
44
+ if __name__ == "__main__":
45
+ demo.launch()
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ gradio==5.4.0
2
+ torch
3
+ transformers