Spaces:
Sleeping
Sleeping
Update Ingest.py
Browse files
Ingest.py
CHANGED
@@ -1,10 +1,11 @@
|
|
1 |
import ray
|
2 |
import logging
|
|
|
3 |
from langchain_community.document_loaders import DirectoryLoader
|
4 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
5 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
6 |
from langchain_community.vectorstores import FAISS
|
7 |
-
from faiss import IndexFlatL2
|
8 |
|
9 |
# Initialize Ray
|
10 |
ray.init()
|
@@ -12,62 +13,71 @@ ray.init()
|
|
12 |
# Set up basic configuration for logging
|
13 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
# Load documents with logging
|
16 |
logging.info("Loading documents...")
|
17 |
loader = DirectoryLoader('data', glob="./*.txt")
|
18 |
documents = loader.load()
|
19 |
|
20 |
-
# Extract text from documents and split into manageable chunks
|
21 |
logging.info("Extracting and splitting texts from documents...")
|
22 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1024, chunk_overlap=200)
|
23 |
texts = []
|
24 |
for document in documents:
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
texts.extend(text_splitter.split_text(text_content))
|
32 |
-
except Exception as e:
|
33 |
-
logging.error(f"Error processing document {document}: {e}")
|
34 |
-
|
35 |
-
# Initialize embedding model once outside the loop
|
36 |
-
embeddings_model = HuggingFaceEmbeddings(model_name="law-ai/InLegalBERT")
|
37 |
|
38 |
-
# Define embedding function
|
39 |
def embedding_function(text):
|
|
|
40 |
return embeddings_model.embed_query(text)
|
41 |
|
42 |
-
#
|
43 |
-
|
44 |
|
45 |
-
#
|
46 |
-
|
47 |
-
index_to_docstore_id = {i: i for i in range(len(texts))}
|
48 |
-
|
49 |
-
# Initialize FAISS
|
50 |
-
faiss_db = FAISS(embedding_function, index, docstore, index_to_docstore_id)
|
51 |
-
|
52 |
-
# Process and store embeddings
|
53 |
-
logging.info("Storing embeddings in FAISS...")
|
54 |
-
for i, text in enumerate(texts):
|
55 |
-
try:
|
56 |
-
embedding = embedding_function(text)
|
57 |
-
faiss_db.add_documents([embedding])
|
58 |
-
except Exception as e:
|
59 |
-
logging.error(f"Error embedding document {i}: {e}")
|
60 |
-
|
61 |
-
# Exporting the vector embeddings database with logging
|
62 |
-
logging.info("Exporting the vector embeddings database...")
|
63 |
-
try:
|
64 |
-
faiss_db.save_local("ipc_embed_db")
|
65 |
-
logging.info("Export completed successfully.")
|
66 |
-
except Exception as e:
|
67 |
-
logging.error(f"Error exporting FAISS database: {e}")
|
68 |
-
|
69 |
-
# Log a message to indicate the completion of the process
|
70 |
-
logging.info("Process completed successfully.")
|
71 |
|
72 |
# Shutdown Ray after the process
|
73 |
ray.shutdown()
|
|
|
|
|
|
1 |
import ray
|
2 |
import logging
|
3 |
+
import os
|
4 |
from langchain_community.document_loaders import DirectoryLoader
|
5 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
6 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
7 |
from langchain_community.vectorstores import FAISS
|
8 |
+
from faiss import IndexFlatL2 # Assuming using L2 distance for simplicity
|
9 |
|
10 |
# Initialize Ray
|
11 |
ray.init()
|
|
|
13 |
# Set up basic configuration for logging
|
14 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
15 |
|
16 |
+
# Directory where the FAISS index is saved
|
17 |
+
index_directory = 'ipc_embed_db'
|
18 |
+
index_filename = 'index.faiss'
|
19 |
+
index_path = os.path.join(index_directory, index_filename)
|
20 |
+
|
21 |
+
# Function to create a new FAISS index if it doesn't exist
|
22 |
+
def create_faiss_index(texts, embedding_function):
|
23 |
+
# Create the FAISS index with L2 distance
|
24 |
+
logging.info("Creating a new FAISS index...")
|
25 |
+
index = IndexFlatL2(768) # Dimensionality of the embeddings
|
26 |
+
docstore = {i: text for i, text in enumerate(texts)}
|
27 |
+
index_to_docstore_id = {i: i for i in range(len(texts))}
|
28 |
+
faiss_db = FAISS(embedding_function, index, docstore, index_to_docstore_id)
|
29 |
+
|
30 |
+
# Adding documents to the FAISS index
|
31 |
+
logging.info("Adding documents to FAISS index...")
|
32 |
+
for text in texts:
|
33 |
+
embedding = embedding_function(text)
|
34 |
+
faiss_db.add_documents([embedding])
|
35 |
+
|
36 |
+
# Save the FAISS index to disk
|
37 |
+
logging.info("Saving FAISS index to disk...")
|
38 |
+
faiss_db.save_local(index_directory)
|
39 |
+
logging.info("FAISS index saved successfully.")
|
40 |
+
return faiss_db
|
41 |
+
|
42 |
+
# Function to load an existing FAISS index
|
43 |
+
def load_faiss_index(embedding_function):
|
44 |
+
if os.path.exists(index_path):
|
45 |
+
logging.info("Loading existing FAISS index...")
|
46 |
+
faiss_db = FAISS.load_local(index_directory, embedding_function)
|
47 |
+
logging.info("FAISS index loaded successfully.")
|
48 |
+
return faiss_db
|
49 |
+
else:
|
50 |
+
logging.info("FAISS index not found, creating a new one...")
|
51 |
+
return create_faiss_index(texts, embedding_function)
|
52 |
+
|
53 |
# Load documents with logging
|
54 |
logging.info("Loading documents...")
|
55 |
loader = DirectoryLoader('data', glob="./*.txt")
|
56 |
documents = loader.load()
|
57 |
|
58 |
+
# Extract text from documents and split into manageable chunks
|
59 |
logging.info("Extracting and splitting texts from documents...")
|
60 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1024, chunk_overlap=200)
|
61 |
texts = []
|
62 |
for document in documents:
|
63 |
+
if hasattr(document, 'get_text'):
|
64 |
+
text_content = document.get_text() # Adjust according to actual method
|
65 |
+
else:
|
66 |
+
text_content = "" # Default to empty string if no text method is available
|
67 |
+
texts.extend(text_splitter.split_text(text_content))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
+
# Define embedding function
|
70 |
def embedding_function(text):
|
71 |
+
embeddings_model = HuggingFaceEmbeddings(model_name="law-ai/InLegalBERT")
|
72 |
return embeddings_model.embed_query(text)
|
73 |
|
74 |
+
# Load or create the FAISS index dynamically
|
75 |
+
faiss_db = load_faiss_index(embedding_function)
|
76 |
|
77 |
+
# If you need to perform a search or interact with the FAISS index:
|
78 |
+
# db_retriever = faiss_db.as_retriever(search_type="similarity", search_kwargs={"k": 3})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
# Shutdown Ray after the process
|
81 |
ray.shutdown()
|
82 |
+
|
83 |
+
logging.info("Process completed successfully.")
|