Spaces:
Runtime error
Runtime error
Scaling fix + final weights (#1)
Browse files- Workaround for scaling bug in transformers (d9a4d76f13ecd995b9b83e2ca93f890aa3878881)
- Use main branches (5e2122e233d1da68e93f0f3b2023c70e8b9521e4)
- app.py +18 -6
- requirements.txt +1 -1
app.py
CHANGED
|
@@ -1,23 +1,35 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
import os
|
| 3 |
import torch
|
| 4 |
from transformers import FuyuForCausalLM, AutoTokenizer
|
| 5 |
from transformers.models.fuyu.processing_fuyu import FuyuProcessor
|
| 6 |
from transformers.models.fuyu.image_processing_fuyu import FuyuImageProcessor
|
|
|
|
| 7 |
|
| 8 |
model_id = "adept/fuyu-8b"
|
| 9 |
-
revision = "refs/pr/3"
|
| 10 |
dtype = torch.bfloat16
|
| 11 |
device = "cuda"
|
| 12 |
|
| 13 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id
|
| 14 |
-
model = FuyuForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype=dtype
|
| 15 |
processor = FuyuProcessor(image_processor=FuyuImageProcessor(), tokenizer=tokenizer)
|
| 16 |
|
| 17 |
caption_prompt = "Generate a coco-style caption.\\n"
|
| 18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
def predict(image, prompt):
|
| 20 |
# image = image.convert('RGB')
|
|
|
|
|
|
|
| 21 |
model_inputs = processor(text=prompt, images=[image])
|
| 22 |
model_inputs = {k: v.to(dtype=dtype if torch.is_floating_point(v) else v.dtype, device=device) for k,v in model_inputs.items()}
|
| 23 |
|
|
@@ -57,7 +69,7 @@ with gr.Blocks(css=css) as demo:
|
|
| 57 |
with gr.Tab("Visual Question Answering"):
|
| 58 |
with gr.Row():
|
| 59 |
with gr.Column():
|
| 60 |
-
image_input = gr.Image(label="Upload your Image")
|
| 61 |
text_input = gr.Textbox(label="Ask a Question")
|
| 62 |
vqa_output = gr.Textbox(label="Output")
|
| 63 |
|
|
@@ -75,7 +87,7 @@ with gr.Blocks(css=css) as demo:
|
|
| 75 |
|
| 76 |
with gr.Tab("Image Captioning"):
|
| 77 |
with gr.Row():
|
| 78 |
-
captioning_input = gr.Image(label="Upload your Image")
|
| 79 |
captioning_output = gr.Textbox(label="Output")
|
| 80 |
captioning_btn = gr.Button("Generate Caption")
|
| 81 |
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
import torch
|
| 3 |
from transformers import FuyuForCausalLM, AutoTokenizer
|
| 4 |
from transformers.models.fuyu.processing_fuyu import FuyuProcessor
|
| 5 |
from transformers.models.fuyu.image_processing_fuyu import FuyuImageProcessor
|
| 6 |
+
from PIL import Image
|
| 7 |
|
| 8 |
model_id = "adept/fuyu-8b"
|
|
|
|
| 9 |
dtype = torch.bfloat16
|
| 10 |
device = "cuda"
|
| 11 |
|
| 12 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 13 |
+
model = FuyuForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype=dtype)
|
| 14 |
processor = FuyuProcessor(image_processor=FuyuImageProcessor(), tokenizer=tokenizer)
|
| 15 |
|
| 16 |
caption_prompt = "Generate a coco-style caption.\\n"
|
| 17 |
|
| 18 |
+
def resize_to_max(image, max_width=1920, max_height=1080):
|
| 19 |
+
width, height = image.size
|
| 20 |
+
if width <= max_width and height <= max_height:
|
| 21 |
+
return image
|
| 22 |
+
|
| 23 |
+
scale = min(max_width/width, max_height/height)
|
| 24 |
+
width = int(width*scale)
|
| 25 |
+
height = int(height*scale)
|
| 26 |
+
|
| 27 |
+
return image.resize((width, height), Image.LANCZOS)
|
| 28 |
+
|
| 29 |
def predict(image, prompt):
|
| 30 |
# image = image.convert('RGB')
|
| 31 |
+
image = resize_to_max(image)
|
| 32 |
+
|
| 33 |
model_inputs = processor(text=prompt, images=[image])
|
| 34 |
model_inputs = {k: v.to(dtype=dtype if torch.is_floating_point(v) else v.dtype, device=device) for k,v in model_inputs.items()}
|
| 35 |
|
|
|
|
| 69 |
with gr.Tab("Visual Question Answering"):
|
| 70 |
with gr.Row():
|
| 71 |
with gr.Column():
|
| 72 |
+
image_input = gr.Image(label="Upload your Image", type="pil")
|
| 73 |
text_input = gr.Textbox(label="Ask a Question")
|
| 74 |
vqa_output = gr.Textbox(label="Output")
|
| 75 |
|
|
|
|
| 87 |
|
| 88 |
with gr.Tab("Image Captioning"):
|
| 89 |
with gr.Row():
|
| 90 |
+
captioning_input = gr.Image(label="Upload your Image", type="pil")
|
| 91 |
captioning_output = gr.Textbox(label="Output")
|
| 92 |
captioning_btn = gr.Button("Generate Caption")
|
| 93 |
|
requirements.txt
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
-
git+https://github.com/huggingface/transformers.git
|
| 2 |
accelerate
|
| 3 |
torch==2.0.1
|
|
|
|
| 1 |
+
git+https://github.com/huggingface/transformers.git
|
| 2 |
accelerate
|
| 3 |
torch==2.0.1
|