File size: 8,987 Bytes
0b887a8 80e430b 0b887a8 80e430b 0b887a8 80e430b 0b887a8 80e430b 0b887a8 80e430b 0b887a8 80e430b abd0964 0b887a8 abd0964 0b887a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
import gradio as gr
from openai import OpenAI
import base64
from PIL import Image
import io
import fitz # PyMuPDF
import tempfile
import os
# --- HELPER FUNCTIONS ---
def convert_pdf_to_images(pdf_file):
"""Convert PDF to list of PIL Images"""
images = []
try:
# Save uploaded file to a temporary file
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmp_file:
tmp_file.write(pdf_file)
tmp_file_path = tmp_file.name
# Open the PDF file
pdf_document = fitz.open(tmp_file_path)
# Iterate through each page
for page_num in range(len(pdf_document)):
page = pdf_document.load_page(page_num)
pix = page.get_pixmap()
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
images.append(img)
# Clean up
pdf_document.close()
os.unlink(tmp_file_path)
except Exception as e:
raise gr.Error(f"Error converting PDF: {e}")
return images
def image_to_base64(image):
"""Convert PIL Image to base64 string"""
with io.BytesIO() as buffer:
image.save(buffer, format="PNG")
return base64.b64encode(buffer.getvalue()).decode("utf-8")
def generate_summary(extracted_texts, api_key):
"""Generate a comprehensive summary of all extracted texts"""
try:
client = OpenAI(
base_url="https://openrouter.ai/api/v1",
api_key=api_key
)
summary_prompt = f"""
You are an expert document analyst. Below are the extracted contents from multiple pages of a document.
Please provide a comprehensive, detailed summary that:
1. Organizes all key information logically
2. Identifies relationships between data points
3. Highlights important figures, dates, names
4. Presents the information in a clear, structured format
Extracted contents from pages:
{extracted_texts}
Comprehensive Summary:
"""
response = client.chat.completions.create(
model="opengvlab/internvl3-14b:free",
messages=[
{"role": "system", "content": "You are Dalton, an expert in analyzing and summarizing document contents."},
{"role": "user", "content": summary_prompt}
],
max_tokens=2048
)
return response.choices[0].message.content
except Exception as e:
raise gr.Error(f"Error generating summary: {e}")
def analyze_document(api_key, user_prompt, uploaded_file):
"""Main processing function"""
if not api_key:
raise gr.Error("Please enter your OpenRouter API key")
if uploaded_file is None:
raise gr.Error("Please upload a document")
images_to_analyze = []
file_ext = os.path.splitext(uploaded_file.name)[1].lower()
# Handle PDF or image
if file_ext == '.pdf':
with open(uploaded_file.name, "rb") as f:
pdf_data = f.read()
pdf_images = convert_pdf_to_images(pdf_data)
images_to_analyze = pdf_images # For simplicity, using all pages
else:
image = Image.open(uploaded_file.name)
images_to_analyze = [image]
# Process each image
all_results = []
extracted_texts = []
for idx, image in enumerate(images_to_analyze, 1):
try:
client = OpenAI(
base_url="https://openrouter.ai/api/v1",
api_key=api_key
)
image_base64 = image_to_base64(image)
response = client.chat.completions.create(
model="opengvlab/internvl3-14b:free",
messages=[
{"role": "system", "content": "You are Dalton, an expert in understanding images that can analyze images and provide detailed descriptions."},
{"role": "user", "content": [
{"type": "text", "text": user_prompt},
{"type": "image_url", "image_url": {
"url": f"data:image/png;base64,{image_base64}"
}}
]}
],
max_tokens=1024
)
result = response.choices[0].message.content
extracted_texts.append(f"### Page {idx}\n{result}\n")
all_results.append(f"## π Page {idx} Results\n{result}\n---\n")
except Exception as e:
raise gr.Error(f"Error analyzing page {idx}: {e}")
# Generate summary if multiple pages
markdown_output = "\n".join(all_results)
if len(extracted_texts) > 1:
summary = generate_summary("\n".join(extracted_texts), api_key)
markdown_output += f"\n## π Comprehensive Summary\n{summary}\n"
# Add structured data section
markdown_output += f"\n## π Key Data Extracted\n"
markdown_output += "- **Important Figures**: [Extracted values]\n"
markdown_output += "- **Critical Dates**: [Extracted dates]\n"
markdown_output += "- **Main Entities**: [Identified names/companies]\n"
markdown_output += "- **Action Items**: [Key tasks identified]\n"
# Add document metadata
markdown_output += f"\n---\n*Document processed: {uploaded_file.name}*"
return markdown_output
# Custom CSS for dark theme with green text
custom_css = """
:root {
--primary: #00ff00;
--primary-50: #00ff0033;
--primary-100: #00ff0066;
--primary-200: #00ff0099;
--primary-300: #00ff00cc;
--secondary: #00cc00;
--secondary-50: #00cc0033;
--secondary-100: #00cc0066;
--secondary-200: #00cc0099;
--secondary-300: #00cc00cc;
--color-background-primary: #000000;
--color-background-secondary: #111111;
--color-background-tertiary: #222222;
--text-color: #00ff00;
--block-background-fill: #111111;
--block-border-color: #00aa00;
--block-label-text-color: #00ff00;
--block-title-text-color: #00ff00;
--input-background-fill: #111111;
--input-border-color: #00aa00;
--input-text-color: #00ff00;
}
body {
background-color: var(--color-background-primary) !important;
color: var(--text-color) !important;
}
.markdown-output {
padding: 20px;
border-radius: 8px;
background: var(--color-background-secondary);
border: 1px solid var(--block-border-color);
max-height: 600px;
overflow-y: auto;
color: var(--text-color) !important;
}
.markdown-output h1,
.markdown-output h2,
.markdown-output h3 {
color: var(--primary) !important;
border-bottom: 1px solid var(--primary-300);
}
.markdown-output a {
color: var(--secondary) !important;
}
.markdown-output code {
background-color: var(--color-background-tertiary);
color: var(--secondary);
}
.markdown-output pre {
background-color: var(--color-background-tertiary) !important;
border: 1px solid var(--block-border-color);
}
.markdown-output ul,
.markdown-output ol {
color: var(--text-color);
}
button {
background: var(--primary) !important;
color: black !important;
font-weight: bold !important;
}
button:hover {
background: var(--primary-300) !important;
}
"""
# Create dark theme
dark_green_theme = gr.themes.Default(
primary_hue="green",
secondary_hue="green",
neutral_hue="green",
).set(
background_fill_primary="#000000",
background_fill_secondary="#111111",
block_background_fill="#111111",
border_color_accent="#00aa00",
block_label_text_color="#00ff00",
body_text_color="#00ff00",
button_primary_text_color="#000000",
)
# --- GRADIO INTERFACE ---
with gr.Blocks(
title="DocSum - Document Summarizer",
theme=dark_green_theme,
css=custom_css
) as demo:
gr.Markdown("# π§Ύ DocSum")
gr.Markdown("Document Summarizer Powered by VLM β’ Developed by [Koshur AI](https://koshurai.com)")
with gr.Row():
api_key = gr.Textbox(
label="π OpenRouter API Key",
type="password",
placeholder="Enter your OpenRouter API key"
)
user_prompt = gr.Textbox(
label="π Enter Your Prompt",
value="Extract all content structurally",
placeholder="What would you like to extract?"
)
uploaded_file = gr.File(
label="Upload Document (PDF/Image)",
file_types=[".pdf", ".jpg", ".jpeg", ".png"]
)
submit_btn = gr.Button("π Analyze Document", variant="primary")
# Markdown output with custom class
output = gr.Markdown(
label="Analysis Results",
elem_classes=["markdown-output"]
)
submit_btn.click(
fn=analyze_document,
inputs=[api_key, user_prompt, uploaded_file],
outputs=output
)
if __name__ == "__main__":
demo.launch() |