File size: 7,738 Bytes
a6c1838
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d47b99
a6c1838
 
5d47b99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6c1838
 
 
 
 
 
5d47b99
a6c1838
 
 
 
5d47b99
a6c1838
 
5d47b99
 
 
 
 
 
a6c1838
5d47b99
a6c1838
 
5d47b99
 
 
a6c1838
5d47b99
a6c1838
5d47b99
 
c4a3c75
5d47b99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6c1838
 
5d47b99
 
 
a6c1838
5d47b99
a6c1838
5d47b99
a6c1838
5d47b99
 
 
 
 
 
 
 
 
 
a6c1838
5d47b99
 
a6c1838
 
5d47b99
a6c1838
 
5d47b99
 
a6c1838
 
 
5d47b99
a6c1838
 
 
 
 
 
 
 
 
 
5d47b99
 
 
 
 
a6c1838
 
 
 
 
 
5d47b99
a6c1838
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d47b99
a6c1838
5d47b99
a6c1838
5d47b99
a6c1838
 
 
 
5d47b99
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
import streamlit as st
import base64
from openai import OpenAI
from PIL import Image
import io
import cv2
import numpy as np

# Configure app
st.set_page_config(
    page_title="AI Vision Assistant",
    page_icon="πŸ”",
    layout="wide",
    initial_sidebar_state="expanded"
)

# Custom CSS for futuristic design
st.markdown("""
<style>
    /* Main colors */
    :root {
        --primary: #6366f1;
        --secondary: #10b981;
        --dark: #1e293b;
        --light: #f8fafc;
    }
    
    /* Main container */
    .stApp {
        background: linear-gradient(135deg, #0f172a 0%, #1e293b 100%);
        color: var(--light);
    }
    
    /* Headers */
    h1, h2, h3, h4, h5, h6 {
        color: var(--light) !important;
        font-family: 'Inter', sans-serif;
    }
    
    /* Sidebar */
    [data-testid="stSidebar"] {
        background: linear-gradient(195deg, #0f172a 0%, #1e40af 100%) !important;
    }
    
    /* Buttons */
    .stButton>button {
        background: var(--primary) !important;
        color: white !important;
        border: none;
        border-radius: 8px;
        padding: 10px 24px;
        font-weight: 500;
        transition: all 0.3s;
    }
    
    .stButton>button:hover {
        transform: translateY(-2px);
        box-shadow: 0 4px 12px rgba(99, 102, 241, 0.3);
    }
    
    /* File uploader */
    [data-testid="stFileUploader"] {
        border: 2px dashed var(--primary) !important;
        border-radius: 12px !important;
        padding: 20px !important;
    }
    
    /* Markdown output */
    .markdown-text {
        background: rgba(30, 41, 59, 0.7) !important;
        border-radius: 12px;
        padding: 20px;
        border-left: 4px solid var(--secondary);
        animation: fadeIn 0.5s ease-in-out;
    }
    
    @keyframes fadeIn {
        from { opacity: 0; transform: translateY(10px); }
        to { opacity: 1; transform: translateY(0); }
    }
    
    /* Streamlit text input */
    .stTextInput>div>div>input {
        background: rgba(15, 23, 42, 0.7) !important;
        color: white !important;
        border: 1px solid #334155 !important;
    }
</style>
""", unsafe_allow_html=True)

# App title and description
st.title("πŸ” Optimus Alpha | Live Vision Assistant")

# Initialize OpenAI client
@st.cache_resource
def get_client():
    return OpenAI(
        base_url="https://openrouter.ai/api/v1",
        api_key='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'  # Replace with your actual key
    )

# ===== Camera/Upload Selection =====
input_method = st.radio(
    "Select input method:",
    ["Live Camera", "Upload Image"],
    horizontal=True
)

# ===== Camera Section =====
captured_image = None

if input_method == "Live Camera":
    st.subheader("Live Camera Feed")
    run_camera = st.checkbox("Start Camera", value=False)
    
    FRAME_WINDOW = st.empty()
    
    if run_camera:
        try:
            cap = cv2.VideoCapture(1)
            if not cap.isOpened():
                st.error("Could not access camera. Please:")
                st.markdown("""
                - Check camera permissions
                - Ensure no other app is using the camera
                - Try reconnecting the camera
                """)
                run_camera = False
            else:
                capture_col, stop_col = st.columns(2)
                with capture_col:
                    capture_button = st.button("πŸ“Έ Capture Image")
                with stop_col:
                    stop_button = st.button("πŸ›‘ Stop Camera")
                
                if stop_button:
                    cap.release()
                    st.rerun()
                
                while run_camera:
                    ret, frame = cap.read()
                    if not ret:
                        st.error("Failed to capture frame")
                        break
                    
                    frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
                    FRAME_WINDOW.image(frame)
                    
                    if capture_button:
                        captured_image = frame
                        cap.release()
                        st.rerun()
                        break
        except Exception as e:
            st.error(f"Camera error: {str(e)}")
            run_camera = False

# ===== Upload Section =====
else:
    st.subheader("Upload Image")
    uploaded_file = st.file_uploader(
        "Choose an image file",
        type=["jpg", "jpeg", "png"],
        label_visibility="collapsed"
    )
    if uploaded_file:
        try:
            captured_image = Image.open(uploaded_file)
            st.image(captured_image, caption="Uploaded Image", width=300)
        except Exception as e:
            st.error(f"Error loading image: {str(e)}")

# ===== Image Analysis Section =====
if captured_image is not None:
    st.subheader("AI Analysis")
    
    # Convert to PIL Image if from OpenCV
    if isinstance(captured_image, np.ndarray):
        image = Image.fromarray(captured_image)
    else:
        image = captured_image
    
    user_prompt = st.text_input(
        "Ask about the image:",
        placeholder="e.g. 'What is in this image?' or 'Explain this diagram'",
        key="user_prompt"
    )
    
    if st.button("Analyze Image", type="primary"):
        try:
            # Convert image to base64
            buffered = io.BytesIO()
            image.save(buffered, format="JPEG")
            image_base64 = base64.b64encode(buffered.getvalue()).decode("utf-8")
            
            # Prepare messages
            messages = [
                {
                    "role": "system",
                    "content": """You are an expert vision assistant. Analyze images with:
- Clear, structured responses
- Bullet points for multiple objects
- Concise explanations
- Highlight important findings in bold"""
                },
                {
                    "role": "user",
                    "content": [
                        {
                            "type": "text",
                            "text": user_prompt if user_prompt else "Describe this image in detail"
                        },
                        {
                            "type": "image_url",
                            "image_url": {
                                "url": f"data:image/jpeg;base64,{image_base64}"
                            }
                        }
                    ]
                }
            ]
            
            # Stream the response
            response_container = st.empty()
            full_response = ""
            
            client = get_client()
            stream = client.chat.completions.create(
                model="openrouter/optimus-alpha",
                messages=messages,
                stream=True
            )
            
            for chunk in stream:
                if chunk.choices[0].delta.content is not None:
                    full_response += chunk.choices[0].delta.content
                    response_container.markdown(f"""
                        <div class="markdown-text">
                        {full_response}
                        </div>
                    """, unsafe_allow_html=True)
        
        except Exception as e:
            st.error(f"Analysis error: {str(e)}")

# Sidebar
with st.sidebar:
    st.image("https://via.placeholder.com/200", width=200)  # Replace with your logo
    st.markdown("""
    *Powered by OpenRouter*
    """)
    st.markdown("---")
    st.markdown("""
    **Tips:**
    - For best results, use clear, well-lit images
    - Ask specific questions for detailed answers
    """)
    st.markdown("Made with ❀️ by Koshur AI")