File size: 5,210 Bytes
5fa4369
10e9b7d
c64bf2e
4097d7c
6a52f23
432114e
dc77905
432114e
245c97c
80241aa
f517fc2
432114e
3635d36
c2f416b
5fa4369
bc758d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8fd0023
432114e
dc77905
432114e
dc77905
432114e
 
 
dc77905
432114e
 
dc77905
432114e
 
 
 
 
dc77905
 
 
432114e
 
dc77905
a942c8c
 
 
dc77905
a942c8c
 
 
 
 
 
 
 
 
 
ef65c0f
a942c8c
 
bc758d9
 
a942c8c
bc758d9
a942c8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39211e6
6a52f23
 
 
 
 
 
 
 
 
 
c2f416b
6a52f23
 
 
 
a942c8c
6a52f23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc758d9
6a52f23
ef65c0f
 
6a52f23
 
ef65c0f
6a52f23
 
 
ef65c0f
6a52f23
 
 
 
 
 
ef65c0f
432114e
6a52f23
36b55d3
c2f416b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

import os
import gradio as gr
import requests
import pandas as pd
import torch
from transformers import BartForConditionalGeneration, BartTokenizer

from audio_transcriber import AudioTranscriptionTool
from image_analyzer import ImageAnalysisTool
from wikipedia_searcher import WikipediaSearcher
from smolagents import ToolCallingAgent

DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

SYSTEM_PROMPT = (
    "You are an agent solving the GAIA benchmark and must provide exact answers.\n"
    "Rules:\n"
    "1. Return only the exact requested answer: no explanation.\n"
    "2. For yes/no, return 'Yes' or 'No'.\n"
    "3. For dates, use the exact requested format.\n"
    "4. For numbers, use only the number.\n"
    "5. For names, use the exact name from sources.\n"
    "6. If the question has a file, download it using the task ID.\n"
    "Examples:\n"
    "- '42'\n"
    "- 'Arturo Nunez'\n"
    "- 'Yes'\n"
    "- 'October 5, 2001'\n"
    "- 'Buenos Aires'\n"
    "Never say 'the answer is...'. Only return the answer.\n"
)

# Local wrapper for facebook/bart-base that exposes generate()
class LocalBartModel:
    def __init__(self, model_name="facebook/bart-base"):
        self.tokenizer = BartTokenizer.from_pretrained(model_name)
        self.model = BartForConditionalGeneration.from_pretrained(model_name)
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        self.model.to(self.device)

    def generate(self, input_ids, **generate_kwargs):
        return self.model.generate(input_ids.to(self.device), **generate_kwargs)

    def __call__(self, prompt: str) -> str:
        inputs = self.tokenizer(prompt, return_tensors="pt").to(self.device)
        output_ids = self.generate(
            inputs.input_ids,
            max_length=100,
            num_beams=5,
            early_stopping=True
        )
        output_text = self.tokenizer.decode(output_ids[0], skip_special_tokens=True)
        return output_text.strip()

class GaiaAgent:
    def __init__(self):
        print("Gaia Agent Initialized")
        self.model = LocalBartModel()
        self.tools = [
            AudioTranscriptionTool(),
            ImageAnalysisTool(),
            WikipediaSearcher()
        ]
        self.agent = ToolCallingAgent(
            tools=self.tools,
            model=self.model
        )

    def __call__(self, question: str) -> str:
        print(f"Agent received question (first 50 chars): {question[:50]}...")

        full_prompt = f"{SYSTEM_PROMPT}\nQUESTION:\n{question}"

        try:
            result = self.agent.run(full_prompt)
            print(f"Raw result from agent: {result}")

            if isinstance(result, dict) and "answer" in result:
                return str(result["answer"]).strip()
            elif isinstance(result, str):
                return result.strip()
            elif isinstance(result, list):
                for item in reversed(result):
                    if isinstance(item, dict) and item.get("role") == "assistant" and "content" in item:
                        return item["content"].strip()
                return "ERROR: Unexpected list format"
            else:
                return "ERROR: Unexpected result type"
        except Exception as e:
            print(f"Exception during agent run: {e}")
            return f"AGENT ERROR: {e}"

def run_and_submit_all(profile: gr.OAuthProfile | None):
    space_id = os.getenv("SPACE_ID")

    if profile:
        username = profile.username
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    try:
        agent = GaiaAgent()
    except Exception as e:
        print(f"Error initializing agent: {e}")
        return f"Error initializing agent: {e}", None

    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    print(f"Agent code URL: {agent_code}")

    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
            return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(questions_data)} questions.")
    except Exception as e:
        return f"Error fetching questions: {e}", None

    results_log = []
    answers_payload = []

    for item in questions_data:
        task_id = item.get("task_id")
        if not task_id:
            continue
        try:
            submitted_answer = agent(item.get("question", ""))
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({
                "Task ID": task_id,
                "Question": item.get("question", ""),
                "Submitted Answer": submitted_answer
            })
        except Exception as e:
            error_msg = f"AGENT ERROR: {e}"
            results_log.append({
                "Task ID": task_id,
                "Question": item.get("question", ""),
                "Submi