Spaces:
Sleeping
Sleeping
File size: 8,646 Bytes
5fa4369 10e9b7d c64bf2e 4097d7c 6a52f23 1381703 245c97c 80241aa f517fc2 3635d36 c2f416b 5fa4369 bc758d9 1381703 bc758d9 8fd0023 a942c8c da58915 1381703 62ad750 1381703 62ad750 79fcd3e 1381703 a942c8c 79fcd3e 1381703 a942c8c 1381703 a942c8c da58915 bc758d9 a942c8c bc758d9 a942c8c 39211e6 6a52f23 c2f416b 6a52f23 a942c8c 6a52f23 bc758d9 6a52f23 ef65c0f 6a52f23 1381703 6a52f23 1381703 6a52f23 62ad750 6a52f23 62ad750 9e16e60 1381703 9e16e60 1381703 9e16e60 6a52f23 36b55d3 c2f416b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
import os
import gradio as gr
import requests
import pandas as pd
from smolagents import ToolCallingAgent, OpenAIServerModel
from audio_transcriber import AudioTranscriptionTool
from image_analyzer import ImageAnalysisTool
from wikipedia_searcher import WikipediaSearcher
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
SYSTEM_PROMPT = (
"You are an agent solving the GAIA benchmark and must provide exact answers.\n"
"Rules:\n"
"1. Return only the exact requested answer: no explanation.\n"
"2. For yes/no, return 'Yes' or 'No'.\n"
"3. For dates, use the exact requested format.\n"
"4. For numbers, use only the number.\n"
"5. For names, use the exact name from sources.\n"
"6. If the question has a file, download it using the task ID.\n"
"Examples:\n"
"- '42'\n"
"- 'Arturo Nunez'\n"
"- 'Yes'\n"
"- 'October 5, 2001'\n"
"- 'Buenos Aires'\n"
"Never say 'the answer is...'. Only return the answer.\n"
)
class GaiaAgent:
def __init__(self):
print("Gaia Agent Initialized")
# Initialize the OpenAI GPT-3.5-turbo model via smolagents OpenAIServerModel
self.model = OpenAIServerModel(
model_name="gpt-3.5-turbo",
api_key=os.getenv("OPENAI_API_KEY") # Make sure you set this in your environment
)
# Initialize the tools
self.tools = [
AudioTranscriptionTool(),
ImageAnalysisTool(),
WikipediaSearcher()
]
# Create the agent with tools and model
self.agent = ToolCallingAgent(
tools=self.tools,
model=self.model
)
def __call__(self, question: str) -> str:
print(f"Agent received question (first 50 chars): {question[:50]}...")
full_prompt = f"{SYSTEM_PROMPT}\nQUESTION:\n{question}"
try:
result = self.agent.run(full_prompt)
print(f"Raw result from agent: {result}")
if isinstance(result, dict) and "answer" in result:
return str(result["answer"]).strip()
elif isinstance(result, str):
return result.strip()
elif isinstance(result, list):
for item in reversed(result):
if isinstance(item, dict) and item.get("role") == "assistant" and "content" in item:
return item["content"].strip()
return "ERROR: Unexpected list format"
else:
return "ERROR: Unexpected result type"
except Exception as e:
print(f"Exception during agent run: {e}")
return f"AGENT ERROR: {e}"
def run_and_submit_all(profile: gr.OAuthProfile | None):
space_id = os.getenv("SPACE_ID")
if profile:
username = profile.username
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
try:
agent = GaiaAgent()
except Exception as e:
print(f"Error initializing agent: {e}")
return f"Error initializing agent: {e}", None
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(f"Agent code URL: {agent_code}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except Exception as e:
return f"Error fetching questions: {e}", None
results_log = []
answers_payload = []
for item in questions_data:
task_id = item.get("task_id")
if not task_id:
continue
question_text = item.get("question", "")
# Download associated file if any (mp3 or jpeg) according to GAIA benchmark task
file_url = item.get("file_url")
local_file_path = None
if file_url:
try:
ext = file_url.split(".")[-1].lower()
if ext in ["mp3", "wav", "jpeg", "jpg", "png"]:
local_file_path = f"./temp_{task_id}.{ext}"
with requests.get(file_url, stream=True) as r:
r.raise_for_status()
with open(local_file_path, "wb") as f:
for chunk in r.iter_content(chunk_size=8192):
f.write(chunk)
print(f"Downloaded file for task {task_id} to {local_file_path}")
# Append info about the file path to the question so the agent knows to use it
question_text += f"\n\nFile path: {local_file_path}"
except Exception as e:
print(f"Failed to download file for task {task_id}: {e}")
try:
submitted_answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({
"Task ID": task_id,
"Question": question_text,
"Submitted Answer": submitted_answer
})
except Exception as e:
error_msg = f"AGENT ERROR: {e}"
results_log.append({
"Task ID": task_id,
"Question": question_text,
"Submitted Answer": error_msg
})
# Cleanup downloaded file
if local_file_path:
try:
os.remove(local_file_path)
except Exception:
pass
if not answers_payload:
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
submission_data = {
"username": username.strip(),
"agent_code": agent_code,
"answers": answers_payload
}
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
try:
detail = e.response.json().get("detail", e.response.text)
except Exception:
detail = e.response.text[:500]
return f"Submission Failed: {detail}", pd.DataFrame(results_log)
except requests.exceptions.Timeout:
return "Submission Failed: The request timed out.", pd.DataFrame(results_log)
except Exception as e:
return f"An unexpected error occurred during submission: {e}", pd.DataFrame(results_log)
# Gradio UI
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown("""
**Instructions:**
1. Clone this space and define your agent and tools.
2. Log in to your Hugging Face account using the button below.
3. Click 'Run Evaluation & Submit All Answers' to test your agent and submit results.
""")
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
space_host = os.getenv("SPACE_HOST")
space_id = os.getenv("SPACE_ID")
if space_host:
print(f"✅ SPACE_HOST found: {space_host}")
print(f" Runtime URL should be: https://{space_host}.hf.space")
else:
print("ℹ️ SPACE_HOST not found.")
if space_id:
print(f"✅ SPACE_ID found: {space_id}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id}")
else:
print("ℹ️ SPACE_ID not found.")
print("-"*(60 + len(" App Starting ")) + "\n")
demo.launch(debug=True, share=False)
|