Spaces:
Sleeping
Sleeping
File size: 8,104 Bytes
5fa4369 10e9b7d c64bf2e 4097d7c 6a52f23 432114e dc77905 432114e 245c97c 80241aa f517fc2 432114e 3635d36 c2f416b 5fa4369 bc758d9 8fd0023 432114e dc77905 432114e dc77905 432114e dc77905 432114e dc77905 432114e dc77905 432114e dc77905 a942c8c dc77905 a942c8c ef65c0f a942c8c bc758d9 a942c8c bc758d9 a942c8c 39211e6 6a52f23 c2f416b 6a52f23 a942c8c 6a52f23 bc758d9 6a52f23 ef65c0f 6a52f23 ef65c0f 6a52f23 ef65c0f 6a52f23 ef65c0f 9e16e60 6a52f23 36b55d3 c2f416b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
import os
import gradio as gr
import requests
import pandas as pd
import torch
from transformers import BartForConditionalGeneration, BartTokenizer
from audio_transcriber import AudioTranscriptionTool
from image_analyzer import ImageAnalysisTool
from wikipedia_searcher import WikipediaSearcher
from smolagents import ToolCallingAgent
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
SYSTEM_PROMPT = (
"You are an agent solving the GAIA benchmark and must provide exact answers.\n"
"Rules:\n"
"1. Return only the exact requested answer: no explanation.\n"
"2. For yes/no, return 'Yes' or 'No'.\n"
"3. For dates, use the exact requested format.\n"
"4. For numbers, use only the number.\n"
"5. For names, use the exact name from sources.\n"
"6. If the question has a file, download it using the task ID.\n"
"Examples:\n"
"- '42'\n"
"- 'Arturo Nunez'\n"
"- 'Yes'\n"
"- 'October 5, 2001'\n"
"- 'Buenos Aires'\n"
"Never say 'the answer is...'. Only return the answer.\n"
)
# Local wrapper for facebook/bart-base that exposes generate()
class LocalBartModel:
def __init__(self, model_name="facebook/bart-base"):
self.tokenizer = BartTokenizer.from_pretrained(model_name)
self.model = BartForConditionalGeneration.from_pretrained(model_name)
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.model.to(self.device)
def generate(self, input_ids, **generate_kwargs):
return self.model.generate(input_ids.to(self.device), **generate_kwargs)
def __call__(self, prompt: str) -> str:
inputs = self.tokenizer(prompt, return_tensors="pt").to(self.device)
output_ids = self.generate(
inputs.input_ids,
max_length=100,
num_beams=5,
early_stopping=True
)
output_text = self.tokenizer.decode(output_ids[0], skip_special_tokens=True)
return output_text.strip()
class GaiaAgent:
def __init__(self):
print("Gaia Agent Initialized")
self.model = LocalBartModel()
self.tools = [
AudioTranscriptionTool(),
ImageAnalysisTool(),
WikipediaSearcher()
]
self.agent = ToolCallingAgent(
tools=self.tools,
model=self.model
)
def __call__(self, question: str) -> str:
print(f"Agent received question (first 50 chars): {question[:50]}...")
full_prompt = f"{SYSTEM_PROMPT}\nQUESTION:\n{question}"
try:
result = self.agent.run(full_prompt)
print(f"Raw result from agent: {result}")
if isinstance(result, dict) and "answer" in result:
return str(result["answer"]).strip()
elif isinstance(result, str):
return result.strip()
elif isinstance(result, list):
for item in reversed(result):
if isinstance(item, dict) and item.get("role") == "assistant" and "content" in item:
return item["content"].strip()
return "ERROR: Unexpected list format"
else:
return "ERROR: Unexpected result type"
except Exception as e:
print(f"Exception during agent run: {e}")
return f"AGENT ERROR: {e}"
def run_and_submit_all(profile: gr.OAuthProfile | None):
space_id = os.getenv("SPACE_ID")
if profile:
username = profile.username
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
try:
agent = GaiaAgent()
except Exception as e:
print(f"Error initializing agent: {e}")
return f"Error initializing agent: {e}", None
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(f"Agent code URL: {agent_code}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except Exception as e:
return f"Error fetching questions: {e}", None
results_log = []
answers_payload = []
for item in questions_data:
task_id = item.get("task_id")
if not task_id:
continue
try:
submitted_answer = agent(item.get("question", ""))
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({
"Task ID": task_id,
"Question": item.get("question", ""),
"Submitted Answer": submitted_answer
})
except Exception as e:
error_msg = f"AGENT ERROR: {e}"
results_log.append({
"Task ID": task_id,
"Question": item.get("question", ""),
"Submitted Answer": error_msg
})
if not answers_payload:
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
submission_data = {
"username": username.strip(),
"agent_code": agent_code,
"answers": answers_payload
}
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
try:
detail = e.response.json().get("detail", e.response.text)
except Exception:
detail = e.response.text[:500]
return f"Submission Failed: {detail}", pd.DataFrame(results_log)
except requests.exceptions.Timeout:
return "Submission Failed: The request timed out.", pd.DataFrame(results_log)
except Exception as e:
return f"An unexpected error occurred during submission: {e}", pd.DataFrame(results_log)
# Gradio UI
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown("""
**Instructions:**
1. Clone this space and define your agent and tools.
2. Log in to your Hugging Face account using the button below.
3. Click 'Run Evaluation & Submit All Answers' to test your agent and submit results.
""")
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
space_host = os.getenv("SPACE_HOST")
space_id = os.getenv("SPACE_ID")
if space_host:
print(f"✅ SPACE_HOST found: {space_host}")
print(f" Runtime URL should be: https://{space_host}.hf.space")
else:
print("ℹ️ SPACE_HOST not found.")
if space_id:
print(f"✅ SPACE_ID found: {space_id}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id}")
else:
print("ℹ️ SPACE_ID not found.")
print("-"*(60 + len(" App Starting ")) + "\n")
demo.launch(debug=True, share=False)
|