Spaces:
Sleeping
Sleeping
File size: 9,074 Bytes
5fa4369 10e9b7d c64bf2e 4097d7c 6a52f23 62ad750 245c97c 80241aa f517fc2 3635d36 c2f416b 5fa4369 bc758d9 62ad750 bc758d9 8fd0023 a942c8c da58915 62ad750 79fcd3e a942c8c 79fcd3e a942c8c 62ad750 a942c8c da58915 62ad750 bc758d9 a942c8c 62ad750 bc758d9 a942c8c 39211e6 6a52f23 c2f416b 6a52f23 a942c8c 6a52f23 bc758d9 6a52f23 ef65c0f 62ad750 ef65c0f 6a52f23 62ad750 6a52f23 62ad750 6a52f23 62ad750 9e16e60 62ad750 9e16e60 6a52f23 36b55d3 c2f416b da58915 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
import os
import gradio as gr
import requests
import pandas as pd
from smolagents import ToolCallingAgent, OpenAIClientModel
from audio_transcriber import AudioTranscriptionTool
from image_analyzer import ImageAnalysisTool
from wikipedia_searcher import WikipediaSearcher
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
SYSTEM_PROMPT = (
"You are an agent solving the GAIA benchmark and must provide exact answers.\n"
"Rules:\n"
"1. Return only the exact requested answer: no explanation.\n"
"2. For yes/no, return 'Yes' or 'No'.\n"
"3. For dates, use the exact requested format.\n"
"4. For numbers, use only the number.\n"
"5. For names, use the exact name from sources.\n"
"6. If the question has a file, download it using the task ID and process it.\n"
"Never say 'the answer is...'. Only return the answer.\n"
)
class GaiaAgent:
def __init__(self):
print("Gaia Agent Initialized")
openai_api_key = os.getenv("OPENAI_API_KEY")
if not openai_api_key:
raise EnvironmentError("OPENAI_API_KEY not found in environment variables.")
self.model = OpenAIClientModel(
model_name="gpt-3.5-turbo",
api_key=openai_api_key
)
self.tools = [
AudioTranscriptionTool(),
ImageAnalysisTool(),
WikipediaSearcher()
]
self.agent = ToolCallingAgent(
tools=self.tools,
model=self.model
)
def download_file(self, task_id: str, file_extension: str) -> str:
file_url = f"{DEFAULT_API_URL}/files/{task_id}.{file_extension}"
local_filename = f"temp_{task_id}.{file_extension}"
try:
r = requests.get(file_url, timeout=30)
r.raise_for_status()
with open(local_filename, "wb") as f:
f.write(r.content)
return local_filename
except Exception as e:
print(f"Error downloading file for task {task_id}: {e}")
return ""
def __call__(self, question: str, task_id: str | None = None, file_name: str | None = None) -> str:
print(f"Agent received question (first 50 chars): {question[:50]}...")
# If there's a file related to the question, download it and prepare tool input
tool_inputs = {}
if task_id and file_name:
ext = file_name.split(".")[-1].lower()
local_path = self.download_file(task_id, ext)
if local_path:
if ext in ["mp3", "wav"]:
tool_inputs = {"file_path": local_path}
question = f"Transcribe the audio file."
elif ext in ["jpg", "jpeg", "png"]:
tool_inputs = {"image_path": local_path, "question": question}
else:
print(f"Unsupported file extension: {ext}")
full_prompt = f"{SYSTEM_PROMPT}\nQUESTION:\n{question}"
try:
# If there's a file to process, call the tool with inputs
if tool_inputs:
for tool in self.tools:
if all(k in tool.inputs for k in tool_inputs.keys()):
result = tool.forward(**tool_inputs)
return result.strip()
# Otherwise, just call the agent with the prompt
result = self.agent.run(full_prompt)
print(f"Raw result from agent: {result}")
if isinstance(result, dict) and "answer" in result:
return str(result["answer"]).strip()
elif isinstance(result, str):
return result.strip()
elif isinstance(result, list):
for item in reversed(result):
if isinstance(item, dict) and item.get("role") == "assistant" and "content" in item:
return item["content"].strip()
return "ERROR: Unexpected list format"
else:
return "ERROR: Unexpected result type"
except Exception as e:
print(f"Exception during agent run: {e}")
return f"AGENT ERROR: {e}"
def run_and_submit_all(profile: gr.OAuthProfile | None):
space_id = os.getenv("SPACE_ID")
if profile:
username = profile.username
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
try:
agent = GaiaAgent()
except Exception as e:
print(f"Error initializing agent: {e}")
return f"Error initializing agent: {e}", None
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(f"Agent code URL: {agent_code}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except Exception as e:
return f"Error fetching questions: {e}", None
results_log = []
answers_payload = []
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question", "")
file_name = item.get("file_name") # file_name may or may not be present
if not task_id:
continue
try:
submitted_answer = agent(question_text, task_id=task_id, file_name=file_name)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({
"Task ID": task_id,
"Question": question_text,
"Submitted Answer": submitted_answer
})
except Exception as e:
error_msg = f"AGENT ERROR: {e}"
results_log.append({
"Task ID": task_id,
"Question": question_text,
"Submitted Answer": error_msg
})
if not answers_payload:
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
submission_data = {
"username": username.strip(),
"agent_code": agent_code,
"answers": answers_payload
}
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
try:
detail = e.response.json().get("detail", e.response.text)
except Exception:
detail = e.response.text[:500]
return f"Submission Failed: {detail}", pd.DataFrame(results_log)
except requests.exceptions.Timeout:
return "Submission Failed: The request timed out.", pd.DataFrame(results_log)
except Exception as e:
return f"An unexpected error occurred during submission: {e}", pd.DataFrame(results_log)
# Gradio UI
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown("""
**Instructions:**
1. Clone this space and define your agent and tools.
2. Log in to your Hugging Face account using the button below.
3. Click 'Run Evaluation & Submit All Answers' to test your agent and submit results.
""")
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(fn=run_and_submit_all, inputs=[gr.get_last_logged_in_user()], outputs=[status_output, results_table])
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
space_host = os.getenv("SPACE_HOST")
space_id = os.getenv("SPACE_ID")
if space_host:
print(f"✅ SPACE_HOST found: {space_host}")
print(f" Runtime URL should be: https://{space_host}.hf.space")
else:
print("ℹ️ SPACE_HOST not found.")
if space_id:
print(f"✅ SPACE_ID found: {space_id}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id}")
else:
print("ℹ️ SPACE_ID not found.")
print("-"*(60 + len(" App Starting ")) + "\n")
demo.launch(debug=True, share=False)
|