File size: 9,074 Bytes
5fa4369
10e9b7d
c64bf2e
4097d7c
6a52f23
62ad750
245c97c
80241aa
f517fc2
3635d36
c2f416b
5fa4369
bc758d9
 
 
 
 
 
 
 
62ad750
bc758d9
 
8fd0023
a942c8c
 
 
da58915
62ad750
 
 
 
 
 
 
 
79fcd3e
a942c8c
 
 
 
 
79fcd3e
a942c8c
 
 
 
 
62ad750
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a942c8c
da58915
62ad750
 
 
 
 
 
 
 
 
 
 
 
 
 
bc758d9
 
a942c8c
62ad750
 
 
 
 
 
 
 
bc758d9
a942c8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39211e6
6a52f23
 
 
 
 
 
 
 
 
 
c2f416b
6a52f23
 
 
 
a942c8c
6a52f23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc758d9
6a52f23
ef65c0f
62ad750
 
 
ef65c0f
6a52f23
 
62ad750
6a52f23
 
 
62ad750
6a52f23
 
 
 
 
 
62ad750
9e16e60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62ad750
9e16e60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a52f23
36b55d3
c2f416b
da58915
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243

import os
import gradio as gr
import requests
import pandas as pd
from smolagents import ToolCallingAgent, OpenAIClientModel
from audio_transcriber import AudioTranscriptionTool
from image_analyzer import ImageAnalysisTool
from wikipedia_searcher import WikipediaSearcher

DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

SYSTEM_PROMPT = (
    "You are an agent solving the GAIA benchmark and must provide exact answers.\n"
    "Rules:\n"
    "1. Return only the exact requested answer: no explanation.\n"
    "2. For yes/no, return 'Yes' or 'No'.\n"
    "3. For dates, use the exact requested format.\n"
    "4. For numbers, use only the number.\n"
    "5. For names, use the exact name from sources.\n"
    "6. If the question has a file, download it using the task ID and process it.\n"
    "Never say 'the answer is...'. Only return the answer.\n"
)

class GaiaAgent:
    def __init__(self):
        print("Gaia Agent Initialized")

        openai_api_key = os.getenv("OPENAI_API_KEY")
        if not openai_api_key:
            raise EnvironmentError("OPENAI_API_KEY not found in environment variables.")

        self.model = OpenAIClientModel(
            model_name="gpt-3.5-turbo",
            api_key=openai_api_key
        )

        self.tools = [
            AudioTranscriptionTool(),
            ImageAnalysisTool(),
            WikipediaSearcher()
        ]

        self.agent = ToolCallingAgent(
            tools=self.tools,
            model=self.model
        )

    def download_file(self, task_id: str, file_extension: str) -> str:
        file_url = f"{DEFAULT_API_URL}/files/{task_id}.{file_extension}"
        local_filename = f"temp_{task_id}.{file_extension}"

        try:
            r = requests.get(file_url, timeout=30)
            r.raise_for_status()
            with open(local_filename, "wb") as f:
                f.write(r.content)
            return local_filename
        except Exception as e:
            print(f"Error downloading file for task {task_id}: {e}")
            return ""

    def __call__(self, question: str, task_id: str | None = None, file_name: str | None = None) -> str:
        print(f"Agent received question (first 50 chars): {question[:50]}...")

        # If there's a file related to the question, download it and prepare tool input
        tool_inputs = {}
        if task_id and file_name:
            ext = file_name.split(".")[-1].lower()
            local_path = self.download_file(task_id, ext)
            if local_path:
                if ext in ["mp3", "wav"]:
                    tool_inputs = {"file_path": local_path}
                    question = f"Transcribe the audio file."
                elif ext in ["jpg", "jpeg", "png"]:
                    tool_inputs = {"image_path": local_path, "question": question}
                else:
                    print(f"Unsupported file extension: {ext}")

        full_prompt = f"{SYSTEM_PROMPT}\nQUESTION:\n{question}"

        try:
            # If there's a file to process, call the tool with inputs
            if tool_inputs:
                for tool in self.tools:
                    if all(k in tool.inputs for k in tool_inputs.keys()):
                        result = tool.forward(**tool_inputs)
                        return result.strip()

            # Otherwise, just call the agent with the prompt
            result = self.agent.run(full_prompt)
            print(f"Raw result from agent: {result}")

            if isinstance(result, dict) and "answer" in result:
                return str(result["answer"]).strip()
            elif isinstance(result, str):
                return result.strip()
            elif isinstance(result, list):
                for item in reversed(result):
                    if isinstance(item, dict) and item.get("role") == "assistant" and "content" in item:
                        return item["content"].strip()
                return "ERROR: Unexpected list format"
            else:
                return "ERROR: Unexpected result type"
        except Exception as e:
            print(f"Exception during agent run: {e}")
            return f"AGENT ERROR: {e}"

def run_and_submit_all(profile: gr.OAuthProfile | None):
    space_id = os.getenv("SPACE_ID")

    if profile:
        username = profile.username
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    try:
        agent = GaiaAgent()
    except Exception as e:
        print(f"Error initializing agent: {e}")
        return f"Error initializing agent: {e}", None

    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    print(f"Agent code URL: {agent_code}")

    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
            return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(questions_data)} questions.")
    except Exception as e:
        return f"Error fetching questions: {e}", None

    results_log = []
    answers_payload = []

    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question", "")
        file_name = item.get("file_name")  # file_name may or may not be present

        if not task_id:
            continue
        try:
            submitted_answer = agent(question_text, task_id=task_id, file_name=file_name)
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({
                "Task ID": task_id,
                "Question": question_text,
                "Submitted Answer": submitted_answer
            })
        except Exception as e:
            error_msg = f"AGENT ERROR: {e}"
            results_log.append({
                "Task ID": task_id,
                "Question": question_text,
                "Submitted Answer": error_msg
            })

    if not answers_payload:
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    submission_data = {
        "username": username.strip(),
        "agent_code": agent_code,
        "answers": answers_payload
    }

    print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
    except requests.exceptions.HTTPError as e:
        try:
            detail = e.response.json().get("detail", e.response.text)
        except Exception:
            detail = e.response.text[:500]
        return f"Submission Failed: {detail}", pd.DataFrame(results_log)
    except requests.exceptions.Timeout:
        return "Submission Failed: The request timed out.", pd.DataFrame(results_log)
    except Exception as e:
        return f"An unexpected error occurred during submission: {e}", pd.DataFrame(results_log)

# Gradio UI
with gr.Blocks() as demo:
    gr.Markdown("# Basic Agent Evaluation Runner")
    gr.Markdown("""
        **Instructions:**
        1. Clone this space and define your agent and tools.
        2. Log in to your Hugging Face account using the button below.
        3. Click 'Run Evaluation & Submit All Answers' to test your agent and submit results.
    """)

    gr.LoginButton()
    run_button = gr.Button("Run Evaluation & Submit All Answers")

    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)

    run_button.click(fn=run_and_submit_all, inputs=[gr.get_last_logged_in_user()], outputs=[status_output, results_table])

if __name__ == "__main__":
    print("\n" + "-"*30 + " App Starting " + "-"*30)
    space_host = os.getenv("SPACE_HOST")
    space_id = os.getenv("SPACE_ID")

    if space_host:
        print(f"✅ SPACE_HOST found: {space_host}")
        print(f"   Runtime URL should be: https://{space_host}.hf.space")
    else:
        print("ℹ️  SPACE_HOST not found.")

    if space_id:
        print(f"✅ SPACE_ID found: {space_id}")
        print(f"   Repo URL: https://huggingface.co/spaces/{space_id}")
    else:
        print("ℹ️  SPACE_ID not found.")

    print("-"*(60 + len(" App Starting ")) + "\n")
    demo.launch(debug=True, share=False)