Spaces:
Sleeping
Sleeping
File size: 7,079 Bytes
5fa4369 05b8101 10e9b7d 61c2ff2 4097d7c 6a52f23 8e3003f 7cfb3a2 61c2ff2 1381703 24398a5 8e3003f 24398a5 b935165 24398a5 8e3003f 24398a5 3635d36 abf0257 8fd0023 46eabca 9ccf47b 7cfb3a2 46eabca a54e373 7cfb3a2 46eabca 6a52f23 8e3003f 7cfb3a2 060e212 7cfb3a2 8e3003f 7cfb3a2 61c2ff2 4856d2b 7cfb3a2 46eabca 7cfb3a2 61c2ff2 6a52f23 46eabca 9ccf47b 46eabca 6a52f23 7cfb3a2 46eabca 6a52f23 7cfb3a2 bc758d9 7cfb3a2 46eabca 7cfb3a2 ef65c0f 7cfb3a2 6a52f23 8e3003f 7cfb3a2 4856d2b 6a52f23 46eabca 61c2ff2 7cfb3a2 61c2ff2 8e3003f 46eabca 9e16e60 7cfb3a2 9e16e60 7cfb3a2 46eabca 7cfb3a2 46eabca 7cfb3a2 9ccf47b 9e16e60 9ccf47b 9e16e60 46eabca 060e212 46eabca 7cfb3a2 61c2ff2 060e212 9e16e60 7cfb3a2 9e16e60 4856d2b 7cfb3a2 4856d2b 7cfb3a2 61c2ff2 6a52f23 cfef47f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
import os
import gradio as gr
import requests
import pandas as pd
import re
from smolagents import CodeAgent, DuckDuckGoSearchTool
from smolagents.models import OpenAIServerModel
SYSTEM_PROMPT = """You are a general AI assistant. Reason step by step, then finish with:
FINAL ANSWER: [YOUR FINAL ANSWER]
Answer rules:
- Numbers: no commas, units, or extra words. Just digits.
- Strings: lowercase, no articles or abbreviations.
- Lists: comma-separated, following the above.
Examples:
Q: What is 12 + 7?
A: 12 + 7 = 19
FINAL ANSWER: 19
Q: Name three European capital cities.
A: They are Amsterdam, Berlin, and Rome.
FINAL ANSWER: amsterdam, berlin, rome
Q: What is the square root of 81?
A: \u221a81 = 9
FINAL ANSWER: 9
Now answer the following:
"""
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
class PatchedOpenAIServerModel(OpenAIServerModel):
def generate(self, messages, stop_sequences=None, **kwargs):
if isinstance(messages, list):
if not any(m["role"] == "system" for m in messages):
messages = [{"role": "system", "content": SYSTEM_PROMPT}] + messages
else:
raise TypeError("Expected 'messages' to be a list of message dicts")
return super().generate(messages=messages, stop_sequences=stop_sequences, **kwargs)
class MyAgent:
def __init__(self):
self.model = PatchedOpenAIServerModel(model_id="gpt-4")
self.agent = CodeAgent(tools=[DuckDuckGoSearchTool()], model=self.model)
def __call__(self, question: str) -> str:
return self.agent.run(question)
def extract_final_answer(output: str) -> str:
if "FINAL ANSWER:" in output:
return output.split("FINAL ANSWER:")[-1].strip().rstrip('.')
return output.strip()
def sanitize_answer(ans: str) -> str:
ans = re.sub(r'\$|%|,', '', ans)
ans = ans.strip().rstrip('.')
return ans
def run_and_submit_all(profile: gr.OAuthProfile | None):
space_id = os.getenv("SPACE_ID")
if profile:
username = profile.username.strip()
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
try:
agent = MyAgent()
except Exception as e:
print(f"Error initializing agent: {e}")
return f"Error initializing agent: {e}", None
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(f"Agent code URL: {agent_code}")
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except Exception as e:
return f"Error fetching questions: {e}", None
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
continue
try:
raw_output = agent(question_text)
extracted = extract_final_answer(raw_output)
submitted_answer = sanitize_answer(extracted)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
error_msg = f"AGENT ERROR: {e}"
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": error_msg})
if not answers_payload:
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
submission_data = {"username": username, "agent_code": agent_code, "answers": answers_payload}
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
try:
detail = e.response.json().get("detail", e.response.text)
except Exception:
detail = e.response.text[:500]
return f"Submission Failed: {detail}", pd.DataFrame(results_log)
except requests.exceptions.Timeout:
return "Submission Failed: The request timed out.", pd.DataFrame(results_log)
except Exception as e:
return f"An unexpected error occurred during submission: {e}", pd.DataFrame(results_log)
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown("""
**Instructions:**
1. Clone this space, modify code to define your agent's logic, tools, and packages.
2. Log in to your Hugging Face account using the button below.
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see your score.
**Note:** Submitting can take some time.
""")
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
space_host = os.getenv("SPACE_HOST")
space_id = os.getenv("SPACE_ID")
if space_host:
print(f"✅ SPACE_HOST found: {space_host}")
print(f" Runtime URL should be: https://{space_host}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id:
print(f"✅ SPACE_ID found: {space_id}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?).")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Basic Agent Evaluation...")
demo.launch(debug=True, share=False)
|