Spaces:
Sleeping
Sleeping
import os | |
import requests | |
from smolagents import Agent | |
from audio_transcriber import AudioTranscriptionTool | |
from image_analyzer import ImageAnalysisTool | |
from wikipedia_searcher import WikipediaSearcher | |
from openai import OpenAI | |
from dotenv import load_dotenv | |
load_dotenv() | |
# Tools | |
audio_tool = AudioTranscriptionTool() | |
image_tool = ImageAnalysisTool() | |
wiki_tool = WikipediaSearcher() | |
# Static system prompt | |
def build_prompt(question: str) -> str: | |
return f"""You are an agent solving the GAIA benchmark and you are required to provide exact answers. | |
Rules to follow: | |
1. Return only the exact requested answer: no explanation and no reasoning. | |
2. For yes/no questions, return exactly "Yes" or "No". | |
3. For dates, use the exact format requested. | |
4. For numbers, use the exact number, no other format. | |
5. For names, use the exact name as found in sources. | |
6. If the question has an associated file, download the file first using the task ID. | |
Examples of good responses: | |
- "42" | |
- "Yes" | |
- "October 5, 2001" | |
- "Buenos Aires" | |
Never include phrases like "the answer is..." or "Based on my research". | |
Only return the exact answer. | |
QUESTION: | |
{question} | |
""" | |
# Main agent function | |
class GAIAAgent: | |
def __init__(self): | |
self.llm = OpenAI(model="gpt-4-turbo", temperature=0) | |
def __call__(self, task: dict) -> str: | |
question = task.get("question", "") | |
attachment_url = task.get("attachment", "") | |
# Handle audio | |
if attachment_url.endswith((".mp3", ".wav")): | |
transcript = audio_tool.forward(attachment_url) | |
question += f"\n\nTranscript of attached audio:\n{transcript}" | |
# Handle image | |
elif attachment_url.endswith((".jpg", ".jpeg", ".png")): | |
return image_tool.forward(attachment_url, question) | |
# Handle Python file | |
elif attachment_url.endswith(".py"): | |
try: | |
code_text = requests.get(attachment_url).text | |
question += f"\n\nAttached Python file content:\n{code_text}" | |
except Exception as e: | |
return f"Error retrieving Python file: {e}" | |
# Wikipedia queries (if task type or instruction indicates) | |
if "wikipedia" in question.lower(): | |
return wiki_tool.search(question) | |
# Build prompt | |
prompt = build_prompt(question) | |
# Run model | |
response = self.llm.chat.completions.create( | |
messages=[{"role": "system", "content": prompt}], | |
model="gpt-4-turbo" | |
) | |
return response.choices[0].message.content.strip() | |
def run_and_submit_all(profile: gr.OAuthProfile | None): | |
space_id = os.getenv("SPACE_ID") | |
if profile: | |
username = profile.username | |
print(f"User logged in: {username}") | |
else: | |
print("User not logged in.") | |
return "Please Login to Hugging Face with the button.", None | |
api_url = DEFAULT_API_URL | |
questions_url = f"{api_url}/questions" | |
submit_url = f"{api_url}/submit" | |
try: | |
agent = MyAgent() | |
except Exception as e: | |
print(f"Error initializing agent: {e}") | |
return f"Error initializing agent: {e}", None | |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" | |
print(f"Agent code URL: {agent_code}") | |
print(f"Fetching questions from: {questions_url}") | |
try: | |
response = requests.get(questions_url, timeout=15) | |
response.raise_for_status() | |
questions_data = response.json() | |
if not questions_data: | |
return "Fetched questions list is empty or invalid format.", None | |
print(f"Fetched {len(questions_data)} questions.") | |
except Exception as e: | |
return f"Error fetching questions: {e}", None | |
results_log = [] | |
answers_payload = [] | |
print(f"Running agent on {len(questions_data)} questions...") | |
for item in questions_data: | |
task_id = item.get("task_id") | |
if not task_id: | |
continue | |
try: | |
submitted_answer = agent(item) | |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) | |
results_log.append({ | |
"Task ID": task_id, | |
"Question": item.get("question", ""), | |
"Submitted Answer": submitted_answer | |
}) | |
except Exception as e: | |
error_msg = f"AGENT ERROR: {e}" | |
results_log.append({ | |
"Task ID": task_id, | |
"Question": item.get("question", ""), | |
"Submitted Answer": error_msg | |
}) | |
if not answers_payload: | |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) | |
submission_data = { | |
"username": username.strip(), | |
"agent_code": agent_code, | |
"answers": answers_payload | |
} | |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}") | |
try: | |
response = requests.post(submit_url, json=submission_data, timeout=60) | |
response.raise_for_status() | |
result_data = response.json() | |
final_status = ( | |
f"Submission Successful!\n" | |
f"User: {result_data.get('username')}\n" | |
f"Overall Score: {result_data.get('score', 'N/A')}% " | |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" | |
f"Message: {result_data.get('message', 'No message received.')}" | |
) | |
results_df = pd.DataFrame(results_log) | |
return final_status, results_df | |
except requests.exceptions.HTTPError as e: | |
try: | |
detail = e.response.json().get("detail", e.response.text) | |
except Exception: | |
detail = e.response.text[:500] | |
return f"Submission Failed: {detail}", pd.DataFrame(results_log) | |
except requests.exceptions.Timeout: | |
return "Submission Failed: The request timed out.", pd.DataFrame(results_log) | |
except Exception as e: | |
return f"An unexpected error occurred during submission: {e}", pd.DataFrame(results_log) | |
# Gradio UI setup | |
with gr.Blocks() as demo: | |
gr.Markdown("# Basic Agent Evaluation Runner") | |
gr.Markdown(""" | |
**Instructions:** | |
1. Clone this space, modify code to define your agent's logic, tools, and packages. | |
2. Log in to your Hugging Face account using the button below. | |
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see your score. | |
**Note:** Submitting can take some time. | |
""") | |
gr.LoginButton() | |
run_button = gr.Button("Run Evaluation & Submit All Answers") | |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) | |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) | |
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table]) | |
if __name__ == "__main__": | |
print("\n" + "-"*30 + " App Starting " + "-"*30) | |
space_host = os.getenv("SPACE_HOST") | |
space_id = os.getenv("SPACE_ID") | |
if space_host: | |
print(f"✅ SPACE_HOST found: {space_host}") | |
print(f" Runtime URL should be: https://{space_host}.hf.space") | |
else: | |
print("ℹ️ SPACE_HOST environment variable not found (running locally?).") | |
if space_id: | |
print(f"✅ SPACE_ID found: {space_id}") | |
print(f" Repo URL: https://huggingface.co/spaces/{space_id}") | |
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id}/tree/main") | |
else: | |
print("ℹ️ SPACE_ID environment variable not found (running locally?).") | |
print("-"*(60 + len(" App Starting ")) + "\n") | |
print("Launching Gradio Interface for Basic Agent Evaluation...") | |
demo.launch(debug=True, share=False) | |