dlaima's picture
Update app.py
79fcd3e verified
raw
history blame
8.94 kB
import os
import gradio as gr
import requests
import pandas as pd
from transformers import BartTokenizer, BartForConditionalGeneration
import torch
from smolagents import ToolCallingAgent
from audio_transcriber import AudioTranscriptionTool
from image_analyzer import ImageAnalysisTool
from wikipedia_searcher import WikipediaSearcher
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
SYSTEM_PROMPT = (
"You are an agent solving the GAIA benchmark and must provide exact answers.\n"
"Rules:\n"
"1. Return only the exact requested answer: no explanation.\n"
"2. For yes/no, return 'Yes' or 'No'.\n"
"3. For dates, use the exact requested format.\n"
"4. For numbers, use only the number.\n"
"5. For names, use the exact name from sources.\n"
"6. If the question has a file, download it using the task ID.\n"
"Examples:\n"
"- '42'\n"
"- 'Arturo Nunez'\n"
"- 'Yes'\n"
"- 'October 5, 2001'\n"
"- 'Buenos Aires'\n"
"Never say 'the answer is...'. Only return the answer.\n"
)
class LocalBartModel:
def __init__(self):
self.tokenizer = BartTokenizer.from_pretrained("facebook/bart-base")
self.model = BartForConditionalGeneration.from_pretrained("facebook/bart-base")
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.model.to(self.device)
self.model.eval()
def generate(self, inputs, **generate_kwargs):
# inputs must be dict with input_ids and attention_mask
if not isinstance(inputs, dict):
raise ValueError(f"Expected dict input but got {type(inputs)}")
input_ids = inputs.get("input_ids")
attention_mask = inputs.get("attention_mask")
if input_ids is None or attention_mask is None:
raise ValueError("input_ids and attention_mask are required in inputs dict")
input_ids = input_ids.to(self.device)
attention_mask = attention_mask.to(self.device)
with torch.no_grad():
outputs = self.model.generate(
input_ids=input_ids,
attention_mask=attention_mask,
**generate_kwargs
)
return outputs
def __call__(self, prompt):
if not isinstance(prompt, str):
raise ValueError(f"LocalBartModel expects a string prompt, got {type(prompt)}")
inputs = self.tokenizer(prompt, return_tensors="pt")
output_ids = self.generate(
inputs,
max_length=100,
num_beams=5,
early_stopping=True
)
output_text = self.tokenizer.decode(output_ids[0], skip_special_tokens=True)
return output_text.strip()
class GaiaAgent:
def __init__(self):
print("Gaia Agent Initialized")
self.model = LocalBartModel()
self.tools = [
AudioTranscriptionTool(),
ImageAnalysisTool(),
WikipediaSearcher()
]
self.agent = ToolCallingAgent(
tools=self.tools,
model=self.model
)
def __call__(self, question: str) -> str:
print(f"Agent received question (first 50 chars): {question[:50]}...")
full_prompt = f"{SYSTEM_PROMPT}\nQUESTION:\n{question}"
try:
result = self.agent.run(full_prompt)
print(f"Raw result from agent: {result}")
# Handle different result types robustly
if isinstance(result, dict) and "answer" in result:
return str(result["answer"]).strip()
elif isinstance(result, str):
return result.strip()
elif isinstance(result, list):
# Try to extract assistant content from list
for item in reversed(result):
if isinstance(item, dict) and item.get("role") == "assistant" and "content" in item:
return item["content"].strip()
return "ERROR: Unexpected list format"
else:
return "ERROR: Unexpected result type"
except Exception as e:
print(f"Exception during agent run: {e}")
return f"AGENT ERROR: {e}"
def run_and_submit_all(profile: gr.OAuthProfile | None):
space_id = os.getenv("SPACE_ID")
if profile:
username = profile.username
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
try:
agent = GaiaAgent()
except Exception as e:
print(f"Error initializing agent: {e}")
return f"Error initializing agent: {e}", None
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(f"Agent code URL: {agent_code}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except Exception as e:
return f"Error fetching questions: {e}", None
results_log = []
answers_payload = []
for item in questions_data:
task_id = item.get("task_id")
if not task_id:
continue
try:
submitted_answer = agent(item.get("question", ""))
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({
"Task ID": task_id,
"Question": item.get("question", ""),
"Submitted Answer": submitted_answer
})
except Exception as e:
error_msg = f"AGENT ERROR: {e}"
results_log.append({
"Task ID": task_id,
"Question": item.get("question", ""),
"Submitted Answer": error_msg
})
if not answers_payload:
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
submission_data = {
"username": username.strip(),
"agent_code": agent_code,
"answers": answers_payload
}
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
try:
detail = e.response.json().get("detail", e.response.text)
except Exception:
detail = e.response.text[:500]
return f"Submission Failed: {detail}", pd.DataFrame(results_log)
except requests.exceptions.Timeout:
return "Submission Failed: The request timed out.", pd.DataFrame(results_log)
except Exception as e:
return f"An unexpected error occurred during submission: {e}", pd.DataFrame(results_log)
# Gradio UI
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown("""
**Instructions:**
1. Clone this space and define your agent and tools.
2. Log in to your Hugging Face account using the button below.
3. Click 'Run Evaluation & Submit All Answers' to test your agent and submit results.
""")
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
space_host = os.getenv("SPACE_HOST")
space_id = os.getenv("SPACE_ID")
if space_host:
print(f"✅ SPACE_HOST found: {space_host}")
print(f" Runtime URL should be: https://{space_host}.hf.space")
else:
print("ℹ️ SPACE_HOST not found.")
if space_id:
print(f"✅ SPACE_ID found: {space_id}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id}")
else:
print("ℹ️ SPACE_ID not found.")
print("-"*(60 + len(" App Starting ")) + "\n")
demo.launch(debug=True, share=False)