dlaima's picture
Update app.py
6a52f23 verified
raw
history blame
7.07 kB
import os
import gradio as gr
import requests
import pandas as pd
#from smolagents.agent import CodeAgent
#from smolagents.models import HfApiModel
from smolagents import Tool
from smolagents import CodeAgent, HfApiModel
from audio_transcriber import AudioTranscriptionTool
from image_analyzer import ImageAnalysisTool
from wikipedia_searcher import WikipediaSearcher
# System prompt
SYSTEM_PROMPT = """You are an agent solving the GAIA benchmark and you are required to provide exact answers.
Rules to follow:
1. Return only the exact requested answer: no explanation and no reasoning.
2. For yes/no questions, return exactly "Yes" or "No".
3. For dates, use the exact format requested.
4. For numbers, use the exact number, no other format.
5. For names, use the exact name as found in sources.
6. If the question has an associated file, process it accordingly.
Examples of good responses:
- "42"
- "Yes"
- "October 5, 2001"
- "Buenos Aires"
Never include phrases like "the answer is..." or "Based on my research".
Only return the exact answer."""
# Tool definitions
audio_tool = AudioTranscriptionTool()
image_tool = ImageAnalysisTool()
wiki_tool = Tool.from_function(
name="wikipedia_search",
description="Search for facts using Wikipedia.",
input_schema={"query": {"type": "string", "description": "Search query"}},
output_type="string",
forward=lambda query: WikipediaSearcher().search(query)
)
tools = [audio_tool, image_tool, wiki_tool]
# Agent factory
def MyAgent():
return CodeAgent(
tools=tools,
system_prompt=SYSTEM_PROMPT,
model=HfApiModel(
api_url="https://api-inference.huggingface.com/models/HuggingFaceH4/zephyr-7b-beta",
api_key=os.getenv("HF_API_TOKEN")
)
)
# Main run and submission logic
def run_and_submit_all(profile: gr.OAuthProfile | None):
space_id = os.getenv("SPACE_ID")
if profile:
username = profile.username
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = os.getenv("GAIA_API_URL", "https://gaia-benchmark.com/api")
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
try:
agent = MyAgent()
except Exception as e:
print(f"Error initializing agent: {e}")
return f"Error initializing agent: {e}", None
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(f"Agent code URL: {agent_code}")
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except Exception as e:
return f"Error fetching questions: {e}", None
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
if not task_id:
continue
try:
submitted_answer = agent(item)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({
"Task ID": task_id,
"Question": item.get("question", ""),
"Submitted Answer": submitted_answer
})
except Exception as e:
error_msg = f"AGENT ERROR: {e}"
results_log.append({
"Task ID": task_id,
"Question": item.get("question", ""),
"Submitted Answer": error_msg
})
if not answers_payload:
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
submission_data = {
"username": username.strip(),
"agent_code": agent_code,
"answers": answers_payload
}
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
try:
detail = e.response.json().get("detail", e.response.text)
except Exception:
detail = e.response.text[:500]
return f"Submission Failed: {detail}", pd.DataFrame(results_log)
except requests.exceptions.Timeout:
return "Submission Failed: The request timed out.", pd.DataFrame(results_log)
except Exception as e:
return f"An unexpected error occurred during submission: {e}", pd.DataFrame(results_log)
# Gradio UI setup
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown("""
**Instructions:**
1. Clone this space, modify code to define your agent's logic, tools, and packages.
2. Log in to your Hugging Face account using the button below.
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see your score.
**Note:** Submitting can take some time.
""")
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])
# App startup logs
if __name__ == "__main__":
print("\n" + "-" * 30 + " App Starting " + "-" * 30)
space_host = os.getenv("SPACE_HOST")
space_id = os.getenv("SPACE_ID")
if space_host:
print(f"✅ SPACE_HOST found: {space_host}")
print(f" Runtime URL should be: https://{space_host}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id:
print(f"✅ SPACE_ID found: {space_id}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?).")
print("-" * (60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Basic Agent Evaluation...")
demo.launch(debug=True, share=False)