Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
import requests | |
import pandas as pd | |
from smolagents import InferenceClientModel, ToolCallingAgent | |
from audio_transcriber import AudioTranscriptionTool | |
from image_analyzer import ImageAnalysisTool | |
from wikipedia_searcher import WikipediaSearcher | |
# GAIA scoring endpoint | |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
# Define the GaiaAgent class with embedded prompt in __call__ | |
class GaiaAgent: | |
def __init__(self): | |
print("Gaia Agent Initialized") | |
self.model = InferenceClientModel( | |
model_id="cognitivecomputations/dolphin-2.6-mixtral-8x7b", | |
token=os.getenv("HUGGINGFACEHUB_API_TOKEN", "").strip() | |
) | |
self.tools = [ | |
AudioTranscriptionTool(), | |
ImageAnalysisTool(), | |
WikipediaSearcher() | |
] | |
self.agent = ToolCallingAgent( | |
tools=self.tools, | |
model=self.model | |
) | |
def __call__(self, question: str) -> str: | |
print(f"Agent received question (first 50 chars): {question[:50]}...") | |
prompt = f"""You are an agent solving the GAIA benchmark and you are required to provide exact answers. | |
Rules to follow: | |
1. Return only the exact requested answer: no explanation and no reasoning. | |
2. For yes/no questions, return exactly \"Yes\" or \"No\". | |
3. For dates, use the exact format requested. | |
4. For numbers, use the exact number, no other format. | |
5. For names, use the exact name as found in sources. | |
6. If the question has an associated file, download the file first using the task ID. | |
Examples of good responses: | |
- \"42\" | |
- \"Arturo Nunez\" | |
- \"Yes\" | |
- \"October 5, 2001\" | |
- \"Buenos Aires\" | |
Never include phrases like \"the answer is...\" or \"Based on my research\". | |
Only return the exact answer. | |
QUESTION: | |
{question} | |
""" | |
try: | |
result = self.agent.run(prompt) | |
print(f"Raw result from agent: {result}") | |
if isinstance(result, dict) and "answer" in result: | |
return str(result["answer"]).strip() | |
elif isinstance(result, str): | |
return result.strip() | |
elif isinstance(result, list): | |
for item in reversed(result): | |
if isinstance(item, dict) and item.get("role") == "assistant" and "content" in item: | |
return item["content"].strip() | |
return "ERROR: Unexpected list format" | |
else: | |
return "ERROR: Unexpected result type" | |
except Exception as e: | |
print(f"Exception during agent run: {e}") | |
return f"AGENT ERROR: {e}" | |
# Evaluation + Submission function | |
def run_and_submit_all(profile: gr.OAuthProfile | None): | |
space_id = os.getenv("SPACE_ID") | |
if profile: | |
username = profile.username | |
print(f"User logged in: {username}") | |
else: | |
print("User not logged in.") | |
return "Please Login to Hugging Face with the button.", None | |
api_url = DEFAULT_API_URL | |
questions_url = f"{api_url}/questions" | |
submit_url = f"{api_url}/submit" | |
try: | |
agent = GaiaAgent() | |
except Exception as e: | |
print(f"Error initializing agent: {e}") | |
return f"Error initializing agent: {e}", None | |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" | |
print(f"Agent code URL: {agent_code}") | |
print(f"Fetching questions from: {questions_url}") | |
try: | |
response = requests.get(questions_url, timeout=15) | |
response.raise_for_status() | |
questions_data = response.json() | |
if not questions_data: | |
return "Fetched questions list is empty or invalid format.", None | |
print(f"Fetched {len(questions_data)} questions.") | |
except Exception as e: | |
return f"Error fetching questions: {e}", None | |
results_log = [] | |
answers_payload = [] | |
print(f"Running agent on {len(questions_data)} questions...") | |
for item in questions_data: | |
task_id = item.get("task_id") | |
if not task_id: | |
continue | |
try: | |
submitted_answer = agent(item.get("question", "")) | |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) | |
results_log.append({ | |
"Task ID": task_id, | |
"Question": item.get("question", ""), | |
"Submitted Answer": submitted_answer | |
}) | |
except Exception as e: | |
error_msg = f"AGENT ERROR: {e}" | |
results_log.append({ | |
"Task ID": task_id, | |
"Question": item.get("question", ""), | |
"Submitted Answer": error_msg | |
}) | |
if not answers_payload: | |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) | |
submission_data = { | |
"username": username.strip(), | |
"agent_code": agent_code, | |
"answers": answers_payload | |
} | |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}") | |
try: | |
response = requests.post(submit_url, json=submission_data, timeout=60) | |
response.raise_for_status() | |
result_data = response.json() | |
final_status = ( | |
f"Submission Successful!\n" | |
f"User: {result_data.get('username')}\n" | |
f"Overall Score: {result_data.get('score', 'N/A')}% " | |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" | |
f"Message: {result_data.get('message', 'No message received.')}" | |
) | |
results_df = pd.DataFrame(results_log) | |
return final_status, results_df | |
except requests.exceptions.HTTPError as e: | |
try: | |
detail = e.response.json().get("detail", e.response.text) | |
except Exception: | |
detail = e.response.text[:500] | |
return f"Submission Failed: {detail}", pd.DataFrame(results_log) | |
except requests.exceptions.Timeout: | |
return "Submission Failed: The request timed out.", pd.DataFrame(results_log) | |
except Exception as e: | |
return f"An unexpected error occurred during submission: {e}", pd.DataFrame(results_log) | |
# Gradio UI | |
with gr.Blocks() as demo: | |
gr.Markdown("# Basic Agent Evaluation Runner") | |
gr.Markdown(""" | |
**Instructions:** | |
1. Clone this space and define your agent and tools. | |
2. Log in to your Hugging Face account using the button below. | |
3. Click 'Run Evaluation & Submit All Answers' to test your agent and submit results. | |
""") | |
gr.LoginButton() | |
run_button = gr.Button("Run Evaluation & Submit All Answers") | |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) | |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) | |
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table]) | |
if __name__ == "__main__": | |
print("\n" + "-"*30 + " App Starting " + "-"*30) | |
space_host = os.getenv("SPACE_HOST") | |
space_id = os.getenv("SPACE_ID") | |
if space_host: | |
print(f"✅ SPACE_HOST found: {space_host}") | |
print(f" Runtime URL should be: https://{space_host}.hf.space") | |
else: | |
print("ℹ️ SPACE_HOST not found.") | |
if space_id: | |
print(f"✅ SPACE_ID found: {space_id}") | |
print(f" Repo URL: https://huggingface.co/spaces/{space_id}") | |
else: | |
print("ℹ️ SPACE_ID not found.") | |
print("-"*(60 + len(" App Starting ")) + "\n") | |
demo.launch(debug=True, share=False) | |