Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
import requests | |
import pandas as pd | |
from smolagents import LiteLLMModel, CodeAgent, DuckDuckGoSearchTool | |
from gaia_tools import ReverseTextTool, RunPythonFileTool, download_server | |
# System prompt for the agent | |
SYSTEM_PROMPT = """You are a general AI assistant. I will ask you a question. | |
Report your thoughts, and finish your answer with just the answer — no prefixes like "FINAL ANSWER:". | |
Your answer should be a number OR as few words as possible OR a comma-separated list of numbers and/or strings. | |
If you're asked for a number, don’t use commas or units like $ or %, unless specified. | |
If you're asked for a string, don’t use articles or abbreviations (e.g. for cities), and write digits in plain text unless told otherwise. | |
Tool Use Guidelines: | |
1. Do **not** use any tools outside of the provided tools list. | |
2. Always use **only one tool at a time** in each step of your execution. | |
3. If the question refers to a `.py` file or uploaded Python script, use **RunPythonFileTool** to execute it and base your answer on its output. | |
4. If the question looks reversed (starts with a period or reads backward), first use **ReverseTextTool** to reverse it, then process the question. | |
5. For logic or word puzzles, solve them directly unless they are reversed — in which case, decode first using **ReverseTextTool**. | |
6. When dealing with Excel files, prioritize using the **excel** tool over writing code in **terminal-controller**. | |
7. If you need to download a file, always use the **download_server** tool and save it to the correct path. | |
8. Even for complex tasks, assume a solution exists. If one method fails, try another approach using different tools. | |
9. Due to context length limits, keep browser-based tasks (e.g., searches) as short and efficient as possible. | |
""" | |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
def delay_execution_10(pagent, **kwargs) -> bool: | |
""" | |
Delays the execution for 10 seconds. | |
""" | |
time.sleep(10) | |
return True | |
# Agent wrapper using LiteLLMModel | |
class MyAgent: | |
def __init__(self): | |
gemini_api_key = os.getenv("GEMINI_API_KEY") | |
openai_api_key = os.getenv("OPENAI_API_KEY") | |
if not gemini_api_key: | |
raise ValueError("GEMINI_API_KEY not set in environment variables.") | |
self.model = LiteLLMModel( | |
# model_id="gemini/gemini-2.0-flash-lite", | |
# model_id="openai/gpt-4o", | |
model_id="gemini/gemini-2.5-flash-lite-preview-06-17", | |
api_key=gemini_api_key, | |
# api_key=openai_api_key, | |
system_prompt=SYSTEM_PROMPT | |
) | |
self.agent = CodeAgent( | |
tools=[ | |
DuckDuckGoSearchTool(), | |
ReverseTextTool, | |
RunPythonFileTool, | |
download_server | |
], | |
model=self.model, | |
add_base_tools=True, | |
max_steps=10, | |
# verbosity_level=LogLevel.ERROR, | |
# additional_authorized_imports=['*'], | |
# planning_interval=5, | |
step_callbacks=[delay_execution_10], | |
) | |
def __call__(self, question: str) -> str: | |
return self.agent.run(question) | |
# Main evaluation function | |
def run_and_submit_all(profile: gr.OAuthProfile | None): | |
space_id = os.getenv("SPACE_ID") | |
if profile: | |
username = profile.username | |
print(f"User logged in: {username}") | |
else: | |
print("User not logged in.") | |
return "Please login to Hugging Face.", None | |
questions_url = f"{DEFAULT_API_URL}/questions" | |
submit_url = f"{DEFAULT_API_URL}/submit" | |
print(questions_url, submit_url) | |
print(username, space_id, os.getenv("GEMINI_API_KEY"), 'keys') | |
try: | |
agent = MyAgent() | |
except Exception as e: | |
return f"Error initializing agent: {e}", None | |
try: | |
response = requests.get(questions_url, timeout=15) | |
response.raise_for_status() | |
questions_data = response.json() | |
except Exception as e: | |
return f"Error fetching questions: {e}", None | |
results_log = [] | |
answers_payload = [] | |
print(questions_data, 'qd') | |
for item in questions_data: | |
task_id = item.get("task_id") | |
question_text = item.get("question") | |
if not task_id or question_text is None: | |
continue | |
try: | |
submitted_answer = agent(question_text) | |
print(submitted_answer, 'answered!!!!') | |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) | |
except Exception as e: | |
results_log.append({ | |
"Task ID": task_id, | |
"Question": question_text, | |
"Submitted Answer": f"AGENT ERROR: {e}" | |
}) | |
print(answers_payload, 'answers####') | |
if not answers_payload: | |
return "Agent did not return any answers.", pd.DataFrame(results_log) | |
submission_data = { | |
"username": profile.username.strip(), | |
"agent_code": f"https://huggingface.co/spaces/{space_id}/tree/main", | |
"answers": answers_payload | |
} | |
try: | |
response = requests.post(submit_url, json=submission_data, timeout=60) | |
response.raise_for_status() | |
result_data = response.json() | |
final_status = ( | |
f"Submission Successful!\n" | |
f"User: {result_data.get('username')}\n" | |
f"Score: {result_data.get('score', 'N/A')}% " | |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" | |
f"Message: {result_data.get('message', 'No message received.')}" | |
) | |
return final_status, pd.DataFrame(results_log) | |
except Exception as e: | |
return f"Submission failed: {e}", pd.DataFrame(results_log) | |
# Gradio UI setup | |
with gr.Blocks() as demo: | |
gr.Markdown("# Agent Evaluation GAIA") | |
gr.Markdown(""" | |
**Instructions:** | |
1. Configure your Gemini API key. | |
2. Log in to Hugging Face. | |
3. Run your agent on evaluation tasks and submit answers. | |
""") | |
gr.LoginButton() | |
run_button = gr.Button("Run Evaluation & Submit All Answers") | |
status_output = gr.Textbox(label="Submission Result", lines=5, interactive=False) | |
results_table = gr.DataFrame(label="Results", wrap=True) | |
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table]) | |
if __name__ == "__main__": | |
print("🔧 App starting...") | |
demo.launch(debug=True, share=False) | |