Spaces:
Sleeping
Sleeping
Update image_analyzer.py
Browse files- image_analyzer.py +22 -14
image_analyzer.py
CHANGED
@@ -5,7 +5,7 @@ from smolagents import Tool
|
|
5 |
|
6 |
class ImageAnalysisTool(Tool):
|
7 |
name = "image_analysis"
|
8 |
-
description = "Analyze the content of an image and answer a specific question about it using
|
9 |
inputs = {
|
10 |
"image_path": {
|
11 |
"type": "string",
|
@@ -20,10 +20,13 @@ class ImageAnalysisTool(Tool):
|
|
20 |
|
21 |
def __init__(self):
|
22 |
super().__init__()
|
23 |
-
|
|
|
|
|
24 |
self.api_url = "https://api-inference.huggingface.co/models/microsoft/git-base-captioning"
|
25 |
self.headers = {
|
26 |
-
"Authorization": f"Bearer {
|
|
|
27 |
}
|
28 |
|
29 |
def forward(self, image_path: str, question: str) -> str:
|
@@ -31,32 +34,36 @@ class ImageAnalysisTool(Tool):
|
|
31 |
with open(image_path, "rb") as img_file:
|
32 |
image_bytes = img_file.read()
|
33 |
|
34 |
-
#
|
35 |
-
|
36 |
-
|
37 |
-
#
|
|
|
|
|
|
|
|
|
38 |
|
39 |
response = requests.post(
|
40 |
self.api_url,
|
41 |
headers=self.headers,
|
42 |
-
|
43 |
timeout=60
|
44 |
)
|
45 |
|
46 |
if response.status_code == 200:
|
47 |
result = response.json()
|
|
|
48 |
caption = None
|
49 |
-
#
|
50 |
if isinstance(result, dict):
|
51 |
-
caption = result.get("generated_text") or result.get("caption")
|
52 |
-
elif isinstance(result, list) and len(result) > 0:
|
53 |
-
caption = result[0].get("generated_text")
|
54 |
|
55 |
if not caption:
|
56 |
return "Error: No caption found in model response."
|
57 |
|
58 |
-
#
|
59 |
-
# If you want a deeper answer, you could chain a chat model here.
|
60 |
answer = f"Caption: {caption}\nAnswer to question '{question}': {caption}"
|
61 |
return answer.strip()
|
62 |
|
@@ -68,4 +75,5 @@ class ImageAnalysisTool(Tool):
|
|
68 |
|
69 |
|
70 |
|
|
|
71 |
|
|
|
5 |
|
6 |
class ImageAnalysisTool(Tool):
|
7 |
name = "image_analysis"
|
8 |
+
description = "Analyze the content of an image and answer a specific question about it using Hugging Face Inference API."
|
9 |
inputs = {
|
10 |
"image_path": {
|
11 |
"type": "string",
|
|
|
20 |
|
21 |
def __init__(self):
|
22 |
super().__init__()
|
23 |
+
api_token = os.getenv("HF_API_TOKEN")
|
24 |
+
if not api_token:
|
25 |
+
raise EnvironmentError("HF_API_TOKEN not found in environment variables.")
|
26 |
self.api_url = "https://api-inference.huggingface.co/models/microsoft/git-base-captioning"
|
27 |
self.headers = {
|
28 |
+
"Authorization": f"Bearer {api_token}",
|
29 |
+
"Content-Type": "application/json"
|
30 |
}
|
31 |
|
32 |
def forward(self, image_path: str, question: str) -> str:
|
|
|
34 |
with open(image_path, "rb") as img_file:
|
35 |
image_bytes = img_file.read()
|
36 |
|
37 |
+
# Encode image to base64 string
|
38 |
+
img_b64 = base64.b64encode(image_bytes).decode("utf-8")
|
39 |
+
|
40 |
+
# Prepare JSON payload - the exact structure depends on the model capabilities
|
41 |
+
# Here we send just the image for captioning
|
42 |
+
payload = {
|
43 |
+
"inputs": img_b64
|
44 |
+
}
|
45 |
|
46 |
response = requests.post(
|
47 |
self.api_url,
|
48 |
headers=self.headers,
|
49 |
+
json=payload,
|
50 |
timeout=60
|
51 |
)
|
52 |
|
53 |
if response.status_code == 200:
|
54 |
result = response.json()
|
55 |
+
|
56 |
caption = None
|
57 |
+
# Try common keys for caption output
|
58 |
if isinstance(result, dict):
|
59 |
+
caption = result.get("generated_text") or result.get("caption") or result.get("text")
|
60 |
+
elif isinstance(result, list) and len(result) > 0 and isinstance(result[0], dict):
|
61 |
+
caption = result[0].get("generated_text") or result[0].get("caption") or result[0].get("text")
|
62 |
|
63 |
if not caption:
|
64 |
return "Error: No caption found in model response."
|
65 |
|
66 |
+
# Combine caption with the question to form a simple answer
|
|
|
67 |
answer = f"Caption: {caption}\nAnswer to question '{question}': {caption}"
|
68 |
return answer.strip()
|
69 |
|
|
|
75 |
|
76 |
|
77 |
|
78 |
+
|
79 |
|