dlaima commited on
Commit
4d6fbfe
·
verified ·
1 Parent(s): 40a16e0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +46 -77
app.py CHANGED
@@ -6,21 +6,34 @@ import pandas as pd
6
  from smolagents import CodeAgent, DuckDuckGoSearchTool
7
  from smolagents.models import OpenAIServerModel
8
 
9
- # --- Constants ---
10
- DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
11
-
12
- # --- System prompt for the model ---
13
- SYSTEM_PROMPT = """
14
- You are a general AI assistant. I will ask you a question. Report your thoughts, and finish your answer with the following template:
15
  FINAL ANSWER: [YOUR FINAL ANSWER].
16
  YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list
17
- of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list,
18
- apply the above rules depending of whether the element to be put in the list is a number or a string.
19
- """
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
 
21
  def run_and_submit_all(profile: gr.OAuthProfile | None):
22
  """
23
- Fetch all questions, run the agent on them, submit answers, and display results.
24
  """
25
  space_id = os.getenv("SPACE_ID")
26
 
@@ -29,31 +42,21 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
29
  print(f"User logged in: {username}")
30
  else:
31
  print("User not logged in.")
32
- return "Please login to Hugging Face with the button.", None
33
 
34
  api_url = DEFAULT_API_URL
35
  questions_url = f"{api_url}/questions"
36
  submit_url = f"{api_url}/submit"
37
 
38
- # Instantiate Agent with fixed system_prompt keyword
39
  try:
40
- agent = CodeAgent(
41
- model=OpenAIServerModel(
42
- model_id="gpt-4o-mini",
43
- system_prompt=SYSTEM_PROMPT
44
- ),
45
- tools=[DuckDuckGoSearchTool()]
46
- )
47
- print("Agent initialized successfully.")
48
  except Exception as e:
49
  print(f"Error initializing agent: {e}")
50
  return f"Error initializing agent: {e}", None
51
 
52
- # Link to code repo on Hugging Face
53
  agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
54
- print(agent_code)
55
 
56
- # Fetch questions
57
  print(f"Fetching questions from: {questions_url}")
58
  try:
59
  response = requests.get(questions_url, timeout=15)
@@ -63,14 +66,10 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
63
  print("Fetched questions list is empty.")
64
  return "Fetched questions list is empty or invalid format.", None
65
  print(f"Fetched {len(questions_data)} questions.")
66
- except requests.exceptions.RequestException as e:
67
  print(f"Error fetching questions: {e}")
68
  return f"Error fetching questions: {e}", None
69
- except Exception as e:
70
- print(f"Unexpected error fetching questions: {e}")
71
- return f"Unexpected error fetching questions: {e}", None
72
 
73
- # Run agent on questions
74
  results_log = []
75
  answers_payload = []
76
  print(f"Running agent on {len(questions_data)} questions...")
@@ -78,37 +77,22 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
78
  task_id = item.get("task_id")
79
  question_text = item.get("question")
80
  if not task_id or question_text is None:
81
- print(f"Skipping item with missing task_id or question: {item}")
82
  continue
83
  try:
84
  submitted_answer = agent(question_text)
85
  answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
86
- results_log.append({
87
- "Task ID": task_id,
88
- "Question": question_text,
89
- "Submitted Answer": submitted_answer
90
- })
91
  except Exception as e:
92
  print(f"Error running agent on task {task_id}: {e}")
93
- results_log.append({
94
- "Task ID": task_id,
95
- "Question": question_text,
96
- "Submitted Answer": f"AGENT ERROR: {e}"
97
- })
98
 
99
  if not answers_payload:
100
  print("Agent did not produce any answers to submit.")
101
  return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
102
 
103
- # Prepare submission payload
104
- submission_data = {
105
- "username": username.strip(),
106
- "agent_code": agent_code,
107
- "answers": answers_payload
108
- }
109
- print(f"Submitting {len(answers_payload)} answers for user '{username}'...")
110
-
111
- # Submit answers
112
  try:
113
  response = requests.post(submit_url, json=submission_data, timeout=60)
114
  response.raise_for_status()
@@ -132,51 +116,36 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
132
  error_detail += f" Response: {e.response.text[:500]}"
133
  status_message = f"Submission Failed: {error_detail}"
134
  print(status_message)
135
- results_df = pd.DataFrame(results_log)
136
- return status_message, results_df
137
  except requests.exceptions.Timeout:
138
  status_message = "Submission Failed: The request timed out."
139
  print(status_message)
140
- results_df = pd.DataFrame(results_log)
141
- return status_message, results_df
142
- except requests.exceptions.RequestException as e:
143
- status_message = f"Submission Failed: Network error - {e}"
144
- print(status_message)
145
- results_df = pd.DataFrame(results_log)
146
- return status_message, results_df
147
  except Exception as e:
148
- status_message = f"Unexpected error during submission: {e}"
149
  print(status_message)
150
- results_df = pd.DataFrame(results_log)
151
- return status_message, results_df
152
-
153
 
154
- # --- Gradio Interface ---
155
  with gr.Blocks() as demo:
156
  gr.Markdown("# Basic Agent Evaluation Runner")
157
  gr.Markdown(
158
  """
159
  **Instructions:**
160
- 1. Please clone this space, then modify the code to define your agent's logic, tools, packages, etc.
161
- 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
162
- 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
163
- ---
164
- **Disclaimers:**
165
- Submission can take time depending on the number of questions and model latency.
166
- This space provides a basic setup and encourages you to improve it further.
167
  """
168
  )
169
 
170
- login_button = gr.LoginButton()
171
  run_button = gr.Button("Run Evaluation & Submit All Answers")
 
172
  status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
173
  results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
174
 
175
- run_button.click(
176
- fn=run_and_submit_all,
177
- inputs=[login_button],
178
- outputs=[status_output, results_table]
179
- )
180
 
181
  if __name__ == "__main__":
182
  print("\n" + "-"*30 + " App Starting " + "-"*30)
@@ -187,14 +156,14 @@ if __name__ == "__main__":
187
  print(f"✅ SPACE_HOST found: {space_host}")
188
  print(f" Runtime URL should be: https://{space_host}.hf.space")
189
  else:
190
- print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
191
 
192
  if space_id:
193
  print(f"✅ SPACE_ID found: {space_id}")
194
  print(f" Repo URL: https://huggingface.co/spaces/{space_id}")
195
  print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id}/tree/main")
196
  else:
197
- print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
198
 
199
  print("-"*(60 + len(" App Starting ")) + "\n")
200
 
 
6
  from smolagents import CodeAgent, DuckDuckGoSearchTool
7
  from smolagents.models import OpenAIServerModel
8
 
9
+ # System prompt as per your instructions
10
+ SYSTEM_PROMPT = """You are a general AI assistant. I will ask you a question.
11
+ Report your thoughts, and finish your answer with the following template:
 
 
 
12
  FINAL ANSWER: [YOUR FINAL ANSWER].
13
  YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list
14
+ of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string."""
15
+
16
+ DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
17
+
18
+ class MyAgent:
19
+ def __init__(self):
20
+ # Initialize model with system prompt
21
+ self.model = OpenAIServerModel(
22
+ model_id="gpt-4",
23
+ system_message=SYSTEM_PROMPT
24
+ )
25
+ self.agent = CodeAgent(
26
+ tools=[DuckDuckGoSearchTool()],
27
+ model=self.model
28
+ )
29
+
30
+ def __call__(self, question: str) -> str:
31
+ # Run agent on the question
32
+ return self.agent.run(question)
33
 
34
  def run_and_submit_all(profile: gr.OAuthProfile | None):
35
  """
36
+ Fetches questions, runs the agent, submits answers, returns status and results table.
37
  """
38
  space_id = os.getenv("SPACE_ID")
39
 
 
42
  print(f"User logged in: {username}")
43
  else:
44
  print("User not logged in.")
45
+ return "Please Login to Hugging Face with the button.", None
46
 
47
  api_url = DEFAULT_API_URL
48
  questions_url = f"{api_url}/questions"
49
  submit_url = f"{api_url}/submit"
50
 
 
51
  try:
52
+ agent = MyAgent()
 
 
 
 
 
 
 
53
  except Exception as e:
54
  print(f"Error initializing agent: {e}")
55
  return f"Error initializing agent: {e}", None
56
 
 
57
  agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
58
+ print(f"Agent code URL: {agent_code}")
59
 
 
60
  print(f"Fetching questions from: {questions_url}")
61
  try:
62
  response = requests.get(questions_url, timeout=15)
 
66
  print("Fetched questions list is empty.")
67
  return "Fetched questions list is empty or invalid format.", None
68
  print(f"Fetched {len(questions_data)} questions.")
69
+ except Exception as e:
70
  print(f"Error fetching questions: {e}")
71
  return f"Error fetching questions: {e}", None
 
 
 
72
 
 
73
  results_log = []
74
  answers_payload = []
75
  print(f"Running agent on {len(questions_data)} questions...")
 
77
  task_id = item.get("task_id")
78
  question_text = item.get("question")
79
  if not task_id or question_text is None:
80
+ print(f"Skipping invalid item: {item}")
81
  continue
82
  try:
83
  submitted_answer = agent(question_text)
84
  answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
85
+ results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
 
 
 
 
86
  except Exception as e:
87
  print(f"Error running agent on task {task_id}: {e}")
88
+ results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
 
 
 
 
89
 
90
  if not answers_payload:
91
  print("Agent did not produce any answers to submit.")
92
  return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
93
 
94
+ submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
95
+ print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
 
 
 
 
 
 
 
96
  try:
97
  response = requests.post(submit_url, json=submission_data, timeout=60)
98
  response.raise_for_status()
 
116
  error_detail += f" Response: {e.response.text[:500]}"
117
  status_message = f"Submission Failed: {error_detail}"
118
  print(status_message)
119
+ return status_message, pd.DataFrame(results_log)
 
120
  except requests.exceptions.Timeout:
121
  status_message = "Submission Failed: The request timed out."
122
  print(status_message)
123
+ return status_message, pd.DataFrame(results_log)
 
 
 
 
 
 
124
  except Exception as e:
125
+ status_message = f"An unexpected error occurred during submission: {e}"
126
  print(status_message)
127
+ return status_message, pd.DataFrame(results_log)
 
 
128
 
 
129
  with gr.Blocks() as demo:
130
  gr.Markdown("# Basic Agent Evaluation Runner")
131
  gr.Markdown(
132
  """
133
  **Instructions:**
134
+ 1. Clone this space, modify code to define your agent's logic, tools, and packages.
135
+ 2. Log in to your Hugging Face account using the button below.
136
+ 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see your score.
137
+
138
+ **Note:** Submitting can take some time.
 
 
139
  """
140
  )
141
 
142
+ gr.LoginButton()
143
  run_button = gr.Button("Run Evaluation & Submit All Answers")
144
+
145
  status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
146
  results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
147
 
148
+ run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])
 
 
 
 
149
 
150
  if __name__ == "__main__":
151
  print("\n" + "-"*30 + " App Starting " + "-"*30)
 
156
  print(f"✅ SPACE_HOST found: {space_host}")
157
  print(f" Runtime URL should be: https://{space_host}.hf.space")
158
  else:
159
+ print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
160
 
161
  if space_id:
162
  print(f"✅ SPACE_ID found: {space_id}")
163
  print(f" Repo URL: https://huggingface.co/spaces/{space_id}")
164
  print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id}/tree/main")
165
  else:
166
+ print("ℹ️ SPACE_ID environment variable not found (running locally?).")
167
 
168
  print("-"*(60 + len(" App Starting ")) + "\n")
169