Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,80 +1,36 @@
|
|
1 |
|
2 |
import os
|
3 |
-
import gradio as gr
|
4 |
import requests
|
5 |
import pandas as pd
|
|
|
|
|
|
|
6 |
|
7 |
-
from smolagents import ToolCallingAgent, OpenAIServerModel
|
8 |
from audio_transcriber import AudioTranscriptionTool
|
9 |
from image_analyzer import ImageAnalysisTool
|
10 |
from wikipedia_searcher import WikipediaSearcher
|
11 |
|
12 |
-
DEFAULT_API_URL = "https://
|
13 |
-
|
14 |
-
SYSTEM_PROMPT = (
|
15 |
-
"You are an agent solving the GAIA benchmark and must provide exact answers.\n"
|
16 |
-
"Rules:\n"
|
17 |
-
"1. Return only the exact requested answer: no explanation.\n"
|
18 |
-
"2. For yes/no, return 'Yes' or 'No'.\n"
|
19 |
-
"3. For dates, use the exact requested format.\n"
|
20 |
-
"4. For numbers, use only the number.\n"
|
21 |
-
"5. For names, use the exact name from sources.\n"
|
22 |
-
"6. If the question has a file, download it using the task ID.\n"
|
23 |
-
"Examples:\n"
|
24 |
-
"- '42'\n"
|
25 |
-
"- 'Arturo Nunez'\n"
|
26 |
-
"- 'Yes'\n"
|
27 |
-
"- 'October 5, 2001'\n"
|
28 |
-
"- 'Buenos Aires'\n"
|
29 |
-
"Never say 'the answer is...'. Only return the answer.\n"
|
30 |
-
)
|
31 |
|
32 |
class GaiaAgent:
|
33 |
def __init__(self):
|
34 |
-
|
|
|
|
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
api_key=os.getenv("OPENAI_API_KEY") # Make sure you set this in your environment
|
40 |
)
|
41 |
-
|
42 |
-
# Initialize the tools
|
43 |
-
self.tools = [
|
44 |
AudioTranscriptionTool(),
|
45 |
ImageAnalysisTool(),
|
46 |
WikipediaSearcher()
|
47 |
]
|
|
|
48 |
|
49 |
-
|
50 |
-
self.agent
|
51 |
-
tools=self.tools,
|
52 |
-
model=self.model
|
53 |
-
)
|
54 |
-
|
55 |
-
def __call__(self, question: str) -> str:
|
56 |
-
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
57 |
-
|
58 |
-
full_prompt = f"{SYSTEM_PROMPT}\nQUESTION:\n{question}"
|
59 |
-
|
60 |
-
try:
|
61 |
-
result = self.agent.run(full_prompt)
|
62 |
-
print(f"Raw result from agent: {result}")
|
63 |
-
|
64 |
-
if isinstance(result, dict) and "answer" in result:
|
65 |
-
return str(result["answer"]).strip()
|
66 |
-
elif isinstance(result, str):
|
67 |
-
return result.strip()
|
68 |
-
elif isinstance(result, list):
|
69 |
-
for item in reversed(result):
|
70 |
-
if isinstance(item, dict) and item.get("role") == "assistant" and "content" in item:
|
71 |
-
return item["content"].strip()
|
72 |
-
return "ERROR: Unexpected list format"
|
73 |
-
else:
|
74 |
-
return "ERROR: Unexpected result type"
|
75 |
-
except Exception as e:
|
76 |
-
print(f"Exception during agent run: {e}")
|
77 |
-
return f"AGENT ERROR: {e}"
|
78 |
|
79 |
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
80 |
space_id = os.getenv("SPACE_ID")
|
@@ -119,7 +75,6 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
119 |
|
120 |
question_text = item.get("question", "")
|
121 |
|
122 |
-
# Download associated file if any (mp3 or jpeg) according to GAIA benchmark task
|
123 |
file_url = item.get("file_url")
|
124 |
local_file_path = None
|
125 |
if file_url:
|
@@ -133,8 +88,6 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
133 |
for chunk in r.iter_content(chunk_size=8192):
|
134 |
f.write(chunk)
|
135 |
print(f"Downloaded file for task {task_id} to {local_file_path}")
|
136 |
-
|
137 |
-
# Append info about the file path to the question so the agent knows to use it
|
138 |
question_text += f"\n\nFile path: {local_file_path}"
|
139 |
except Exception as e:
|
140 |
print(f"Failed to download file for task {task_id}: {e}")
|
@@ -155,7 +108,6 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
155 |
"Submitted Answer": error_msg
|
156 |
})
|
157 |
|
158 |
-
# Cleanup downloaded file
|
159 |
if local_file_path:
|
160 |
try:
|
161 |
os.remove(local_file_path)
|
@@ -196,7 +148,7 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
196 |
except Exception as e:
|
197 |
return f"An unexpected error occurred during submission: {e}", pd.DataFrame(results_log)
|
198 |
|
199 |
-
|
200 |
with gr.Blocks() as demo:
|
201 |
gr.Markdown("# Basic Agent Evaluation Runner")
|
202 |
gr.Markdown("""
|
@@ -220,16 +172,16 @@ if __name__ == "__main__":
|
|
220 |
space_id = os.getenv("SPACE_ID")
|
221 |
|
222 |
if space_host:
|
223 |
-
print(f"
|
224 |
print(f" Runtime URL should be: https://{space_host}.hf.space")
|
225 |
else:
|
226 |
-
print("
|
227 |
|
228 |
if space_id:
|
229 |
-
print(f"
|
230 |
print(f" Repo URL: https://huggingface.co/spaces/{space_id}")
|
231 |
else:
|
232 |
-
print("
|
233 |
|
234 |
print("-"*(60 + len(" App Starting ")) + "\n")
|
235 |
demo.launch(debug=True, share=False)
|
|
|
1 |
|
2 |
import os
|
|
|
3 |
import requests
|
4 |
import pandas as pd
|
5 |
+
import gradio as gr
|
6 |
+
from smolagents import ToolCallingAgent
|
7 |
+
from smolagents.models import OpenAIServerModel
|
8 |
|
|
|
9 |
from audio_transcriber import AudioTranscriptionTool
|
10 |
from image_analyzer import ImageAnalysisTool
|
11 |
from wikipedia_searcher import WikipediaSearcher
|
12 |
|
13 |
+
DEFAULT_API_URL = "https://gaia-benchmark.com/api"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
class GaiaAgent:
|
16 |
def __init__(self):
|
17 |
+
api_key = os.getenv("OPENAI_API_KEY")
|
18 |
+
if not api_key:
|
19 |
+
raise EnvironmentError("OPENAI_API_KEY not found in environment variables.")
|
20 |
|
21 |
+
model = OpenAIServerModel(
|
22 |
+
model_id="gpt-3.5-turbo",
|
23 |
+
api_key=api_key
|
|
|
24 |
)
|
25 |
+
tools = [
|
|
|
|
|
26 |
AudioTranscriptionTool(),
|
27 |
ImageAnalysisTool(),
|
28 |
WikipediaSearcher()
|
29 |
]
|
30 |
+
self.agent = ToolCallingAgent(model=model, tools=tools)
|
31 |
|
32 |
+
def __call__(self, prompt: str) -> str:
|
33 |
+
return self.agent.run([{"role": "user", "content": prompt}])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
36 |
space_id = os.getenv("SPACE_ID")
|
|
|
75 |
|
76 |
question_text = item.get("question", "")
|
77 |
|
|
|
78 |
file_url = item.get("file_url")
|
79 |
local_file_path = None
|
80 |
if file_url:
|
|
|
88 |
for chunk in r.iter_content(chunk_size=8192):
|
89 |
f.write(chunk)
|
90 |
print(f"Downloaded file for task {task_id} to {local_file_path}")
|
|
|
|
|
91 |
question_text += f"\n\nFile path: {local_file_path}"
|
92 |
except Exception as e:
|
93 |
print(f"Failed to download file for task {task_id}: {e}")
|
|
|
108 |
"Submitted Answer": error_msg
|
109 |
})
|
110 |
|
|
|
111 |
if local_file_path:
|
112 |
try:
|
113 |
os.remove(local_file_path)
|
|
|
148 |
except Exception as e:
|
149 |
return f"An unexpected error occurred during submission: {e}", pd.DataFrame(results_log)
|
150 |
|
151 |
+
|
152 |
with gr.Blocks() as demo:
|
153 |
gr.Markdown("# Basic Agent Evaluation Runner")
|
154 |
gr.Markdown("""
|
|
|
172 |
space_id = os.getenv("SPACE_ID")
|
173 |
|
174 |
if space_host:
|
175 |
+
print(f"\u2705 SPACE_HOST found: {space_host}")
|
176 |
print(f" Runtime URL should be: https://{space_host}.hf.space")
|
177 |
else:
|
178 |
+
print("\u2139\ufe0f SPACE_HOST not found.")
|
179 |
|
180 |
if space_id:
|
181 |
+
print(f"\u2705 SPACE_ID found: {space_id}")
|
182 |
print(f" Repo URL: https://huggingface.co/spaces/{space_id}")
|
183 |
else:
|
184 |
+
print("\u2139\ufe0f SPACE_ID not found.")
|
185 |
|
186 |
print("-"*(60 + len(" App Starting ")) + "\n")
|
187 |
demo.launch(debug=True, share=False)
|