Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,188 +1,113 @@
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
import requests
|
4 |
-
import
|
5 |
-
from typing import List, Dict
|
6 |
|
7 |
-
from smolagents import CodeAgent, DuckDuckGoSearchTool, Tool
|
8 |
-
|
9 |
-
from wikipedia_searcher import WikipediaSearcher
|
10 |
from audio_transcriber import AudioTranscriptionTool
|
11 |
from image_analyzer import ImageAnalysisTool
|
|
|
12 |
|
|
|
|
|
|
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
}
|
22 |
-
}
|
23 |
-
output_type = "string"
|
24 |
-
|
25 |
-
def __init__(self):
|
26 |
-
super().__init__()
|
27 |
-
self.searcher = WikipediaSearcher()
|
28 |
-
|
29 |
-
def forward(self, query: str) -> str:
|
30 |
-
return self.searcher.search(query)
|
31 |
-
|
32 |
-
|
33 |
-
# Hugging Face Inference API wrapper for chat completion
|
34 |
-
class HFChatModel:
|
35 |
-
def __init__(self, model_id: str):
|
36 |
-
self.model_id = model_id
|
37 |
-
self.api_url = f"https://api-inference.huggingface.co/models/{model_id}"
|
38 |
-
self.headers = {"Authorization": f"Bearer {os.getenv('HF_API_TOKEN')}"}
|
39 |
-
self.system_prompt = """
|
40 |
-
You are an agent solving the GAIA benchmark and you are required to provide exact answers.
|
41 |
Rules to follow:
|
42 |
1. Return only the exact requested answer: no explanation and no reasoning.
|
43 |
2. For yes/no questions, return exactly "Yes" or "No".
|
44 |
3. For dates, use the exact format requested.
|
45 |
4. For numbers, use the exact number, no other format.
|
46 |
5. For names, use the exact name as found in sources.
|
47 |
-
6. If the question has an associated file,
|
48 |
Examples of good responses:
|
49 |
- "42"
|
50 |
- "Yes"
|
51 |
- "October 5, 2001"
|
52 |
- "Buenos Aires"
|
53 |
Never include phrases like "the answer is..." or "Based on my research".
|
54 |
-
Only return the exact answer.
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
}
|
67 |
-
}
|
68 |
-
|
69 |
-
# Some HF chat models expect just a string prompt; adjust accordingly per your model's requirements
|
70 |
-
|
71 |
-
response = requests.post(self.api_url, headers=self.headers, json=payload)
|
72 |
-
if response.status_code == 200:
|
73 |
-
output = response.json()
|
74 |
-
# Output format depends on model; adjust as needed
|
75 |
-
if isinstance(output, list) and len(output) > 0 and "generated_text" in output[0]:
|
76 |
-
return output[0]["generated_text"].strip()
|
77 |
-
elif isinstance(output, dict) and "generated_text" in output:
|
78 |
-
return output["generated_text"].strip()
|
79 |
-
else:
|
80 |
-
# fallback to raw text
|
81 |
-
return str(output).strip()
|
82 |
-
else:
|
83 |
-
raise RuntimeError(f"Hugging Face API error {response.status_code}: {response.text}")
|
84 |
-
|
85 |
-
|
86 |
-
class MyAgent:
|
87 |
-
def __init__(self):
|
88 |
-
self.model = HFChatModel(model_id="gpt-4o-mini") # Or any HF chat model you want
|
89 |
-
|
90 |
-
self.agent = CodeAgent(
|
91 |
-
tools=[
|
92 |
-
DuckDuckGoSearchTool(),
|
93 |
-
WikipediaSearchTool(),
|
94 |
-
AudioTranscriptionTool(),
|
95 |
-
ImageAnalysisTool(),
|
96 |
-
],
|
97 |
-
model=self, # We'll route calls via __call__ below
|
98 |
)
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
return self.model.generate(messages)
|
104 |
-
|
105 |
-
|
106 |
-
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
107 |
-
space_id = os.getenv("SPACE_ID")
|
108 |
-
|
109 |
-
if profile:
|
110 |
-
username = profile.username
|
111 |
-
else:
|
112 |
-
return "Please Login to Hugging Face with the button.", None
|
113 |
-
|
114 |
-
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
115 |
-
questions_url = f"{DEFAULT_API_URL}/questions"
|
116 |
-
submit_url = f"{DEFAULT_API_URL}/submit"
|
117 |
-
|
118 |
-
try:
|
119 |
-
agent = MyAgent()
|
120 |
except Exception as e:
|
121 |
-
return f"Error
|
122 |
-
|
123 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
|
125 |
-
|
126 |
-
|
127 |
-
response.raise_for_status()
|
128 |
-
questions_data = response.json()
|
129 |
-
except Exception as e:
|
130 |
-
return f"Error fetching questions: {e}", None
|
131 |
-
|
132 |
-
results_log = []
|
133 |
-
answers_payload = []
|
134 |
-
|
135 |
-
for item in questions_data:
|
136 |
-
task_id = item.get("task_id")
|
137 |
-
if not task_id:
|
138 |
-
continue
|
139 |
-
try:
|
140 |
-
answer = agent(item.get("question", ""))
|
141 |
-
answers_payload.append({"task_id": task_id, "submitted_answer": answer})
|
142 |
-
results_log.append({
|
143 |
-
"Task ID": task_id,
|
144 |
-
"Question": item.get("question", ""),
|
145 |
-
"Submitted Answer": answer
|
146 |
-
})
|
147 |
-
except Exception as e:
|
148 |
-
results_log.append({
|
149 |
-
"Task ID": task_id,
|
150 |
-
"Question": item.get("question", ""),
|
151 |
-
"Submitted Answer": f"Error: {e}"
|
152 |
-
})
|
153 |
-
|
154 |
-
submission_data = {
|
155 |
-
"username": username.strip(),
|
156 |
-
"agent_code": agent_code,
|
157 |
-
"answers": answers_payload
|
158 |
-
}
|
159 |
|
160 |
-
|
161 |
-
|
162 |
-
response.raise_for_status()
|
163 |
-
result_data = response.json()
|
164 |
-
final_status = (
|
165 |
-
f"Submission Successful!\n"
|
166 |
-
f"User: {result_data.get('username')}\n"
|
167 |
-
f"Overall Score: {result_data.get('score', 'N/A')}% "
|
168 |
-
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
169 |
-
f"Message: {result_data.get('message', 'No message received.')}"
|
170 |
-
)
|
171 |
-
return final_status, pd.DataFrame(results_log)
|
172 |
-
except Exception as e:
|
173 |
-
return f"Submission failed: {e}", pd.DataFrame(results_log)
|
174 |
|
|
|
|
|
|
|
175 |
|
176 |
-
|
177 |
-
gr.
|
178 |
-
gr.LoginButton()
|
179 |
-
run_btn = gr.Button("Run Evaluation & Submit All Answers")
|
180 |
-
status_out = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
181 |
-
results_df = gr.DataFrame(label="Questions and Agent Answers")
|
182 |
|
183 |
-
|
184 |
|
185 |
if __name__ == "__main__":
|
186 |
-
demo.launch(
|
187 |
-
|
188 |
|
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
import requests
|
4 |
+
from smolagents import Agent, Tool
|
|
|
5 |
|
|
|
|
|
|
|
6 |
from audio_transcriber import AudioTranscriptionTool
|
7 |
from image_analyzer import ImageAnalysisTool
|
8 |
+
from wikipedia_searcher import WikipediaSearcher
|
9 |
|
10 |
+
# Hugging Face API setup
|
11 |
+
HF_API_TOKEN = os.getenv("HF_API_TOKEN")
|
12 |
+
HF_CHAT_MODEL_URL = "https://api-inference.huggingface.com/models/HuggingFaceH4/zephyr-7b-beta"
|
13 |
|
14 |
+
HEADERS = {
|
15 |
+
"Authorization": f"Bearer {HF_API_TOKEN}",
|
16 |
+
"Content-Type": "application/json"
|
17 |
+
}
|
18 |
+
|
19 |
+
# Static system prompt
|
20 |
+
SYSTEM_PROMPT = """You are an agent solving the GAIA benchmark and you are required to provide exact answers.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
Rules to follow:
|
22 |
1. Return only the exact requested answer: no explanation and no reasoning.
|
23 |
2. For yes/no questions, return exactly "Yes" or "No".
|
24 |
3. For dates, use the exact format requested.
|
25 |
4. For numbers, use the exact number, no other format.
|
26 |
5. For names, use the exact name as found in sources.
|
27 |
+
6. If the question has an associated file, process it accordingly.
|
28 |
Examples of good responses:
|
29 |
- "42"
|
30 |
- "Yes"
|
31 |
- "October 5, 2001"
|
32 |
- "Buenos Aires"
|
33 |
Never include phrases like "the answer is..." or "Based on my research".
|
34 |
+
Only return the exact answer."""
|
35 |
+
|
36 |
+
# Agent tools
|
37 |
+
audio_tool = AudioTranscriptionTool()
|
38 |
+
image_tool = ImageAnalysisTool()
|
39 |
+
wiki_tool = Tool.from_function(
|
40 |
+
name="wikipedia_search",
|
41 |
+
description="Search for facts using Wikipedia.",
|
42 |
+
input_schema={"query": {"type": "string", "description": "Search query"}},
|
43 |
+
output_type="string",
|
44 |
+
forward=lambda query: WikipediaSearcher().search(query)
|
45 |
+
)
|
46 |
+
|
47 |
+
tools = [audio_tool, image_tool, wiki_tool]
|
48 |
+
|
49 |
+
agent = Agent(
|
50 |
+
tools=tools,
|
51 |
+
system_prompt=SYSTEM_PROMPT
|
52 |
+
)
|
53 |
+
|
54 |
+
def query_hf_model(prompt: str) -> str:
|
55 |
+
try:
|
56 |
+
response = requests.post(
|
57 |
+
HF_CHAT_MODEL_URL,
|
58 |
+
headers=HEADERS,
|
59 |
+
json={
|
60 |
+
"inputs": {
|
61 |
+
"past_user_inputs": [],
|
62 |
+
"text": prompt
|
63 |
+
},
|
64 |
+
"parameters": {
|
65 |
+
"max_new_tokens": 256,
|
66 |
+
"return_full_text": False
|
67 |
+
}
|
68 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
)
|
70 |
+
result = response.json()
|
71 |
+
if isinstance(result, dict) and "error" in result:
|
72 |
+
return f"HF API Error: {result['error']}"
|
73 |
+
return result[0]["generated_text"].strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
except Exception as e:
|
75 |
+
return f"Error querying Hugging Face model: {e}"
|
76 |
+
|
77 |
+
def run_and_submit_all(question, file):
|
78 |
+
if file:
|
79 |
+
file_path = file.name
|
80 |
+
if file_path.endswith((".mp3", ".wav")):
|
81 |
+
transcript = audio_tool.forward(file_path)
|
82 |
+
question = f"{question}\n\nTranscription of audio: {transcript}"
|
83 |
+
elif file_path.endswith((".png", ".jpg", ".jpeg")):
|
84 |
+
image_answer = image_tool.forward(file_path, question)
|
85 |
+
return image_answer
|
86 |
+
elif file_path.endswith(".py"):
|
87 |
+
try:
|
88 |
+
with open(file_path, "r") as f:
|
89 |
+
code = f.read()
|
90 |
+
question = f"{question}\n\nPython code:\n{code}"
|
91 |
+
except Exception as e:
|
92 |
+
return f"Error reading code file: {e}"
|
93 |
+
else:
|
94 |
+
return "Unsupported file type."
|
95 |
|
96 |
+
full_prompt = f"{SYSTEM_PROMPT}\nQUESTION:\n{question}"
|
97 |
+
return query_hf_model(full_prompt)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
|
99 |
+
with gr.Blocks(title="GAIA Agent with HF API") as demo:
|
100 |
+
gr.Markdown("### GAIA Evaluation Agent (Hugging Face-based)")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
+
with gr.Row():
|
103 |
+
question_input = gr.Textbox(label="Question", placeholder="Enter your question here...", lines=3)
|
104 |
+
file_input = gr.File(label="Optional File (Audio, Image, or Python)", file_types=[".mp3", ".wav", ".jpg", ".jpeg", ".png", ".py"])
|
105 |
|
106 |
+
submit_button = gr.Button("Run Agent")
|
107 |
+
output_box = gr.Textbox(label="Answer")
|
|
|
|
|
|
|
|
|
108 |
|
109 |
+
submit_button.click(fn=run_and_submit_all, inputs=[question_input, file_input], outputs=output_box)
|
110 |
|
111 |
if __name__ == "__main__":
|
112 |
+
demo.launch()
|
|
|
113 |
|