dlaima commited on
Commit
f854a1c
·
verified ·
1 Parent(s): 81917a3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +68 -62
app.py CHANGED
@@ -1,34 +1,54 @@
1
  import os
2
  import gradio as gr
3
  import requests
4
- import inspect
5
  import pandas as pd
 
 
 
6
 
7
- # (Keep Constants as is)
8
  # --- Constants ---
9
  DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
10
 
11
- # --- Basic Agent Definition ---
12
- # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
13
- class BasicAgent:
14
- def __init__(self):
15
- print("BasicAgent initialized.")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
  def __call__(self, question: str) -> str:
17
- print(f"Agent received question (first 50 chars): {question[:50]}...")
18
- fixed_answer = "This is a default answer."
19
- print(f"Agent returning fixed answer: {fixed_answer}")
20
- return fixed_answer
21
-
22
- def run_and_submit_all( profile: gr.OAuthProfile | None):
23
- """
24
- Fetches all questions, runs the BasicAgent on them, submits all answers,
25
- and displays the results.
26
- """
27
- # --- Determine HF Space Runtime URL and Repo URL ---
28
- space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
 
 
29
 
30
  if profile:
31
- username= f"{profile.username}"
32
  print(f"User logged in: {username}")
33
  else:
34
  print("User not logged in.")
@@ -38,38 +58,31 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
38
  questions_url = f"{api_url}/questions"
39
  submit_url = f"{api_url}/submit"
40
 
41
- # 1. Instantiate Agent ( modify this part to create your agent)
42
  try:
43
- agent = BasicAgent()
44
  except Exception as e:
45
  print(f"Error instantiating agent: {e}")
46
  return f"Error initializing agent: {e}", None
47
- # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
48
  agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
49
- print(agent_code)
50
 
51
- # 2. Fetch Questions
52
  print(f"Fetching questions from: {questions_url}")
53
  try:
54
  response = requests.get(questions_url, timeout=15)
55
  response.raise_for_status()
56
  questions_data = response.json()
57
  if not questions_data:
58
- print("Fetched questions list is empty.")
59
- return "Fetched questions list is empty or invalid format.", None
60
  print(f"Fetched {len(questions_data)} questions.")
61
- except requests.exceptions.RequestException as e:
62
  print(f"Error fetching questions: {e}")
63
  return f"Error fetching questions: {e}", None
64
- except requests.exceptions.JSONDecodeError as e:
65
- print(f"Error decoding JSON response from questions endpoint: {e}")
66
- print(f"Response text: {response.text[:500]}")
67
- return f"Error decoding server response for questions: {e}", None
68
- except Exception as e:
69
- print(f"An unexpected error occurred fetching questions: {e}")
70
- return f"An unexpected error occurred fetching questions: {e}", None
71
 
72
- # 3. Run your Agent
73
  results_log = []
74
  answers_payload = []
75
  print(f"Running agent on {len(questions_data)} questions...")
@@ -84,20 +97,18 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
84
  answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
85
  results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
86
  except Exception as e:
87
- print(f"Error running agent on task {task_id}: {e}")
88
- results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
89
 
90
  if not answers_payload:
91
  print("Agent did not produce any answers to submit.")
92
  return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
93
 
94
- # 4. Prepare Submission
95
  submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
96
- status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
97
- print(status_update)
98
 
99
- # 5. Submit
100
- print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
101
  try:
102
  response = requests.post(submit_url, json=submission_data, timeout=60)
103
  response.raise_for_status()
@@ -117,7 +128,7 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
117
  try:
118
  error_json = e.response.json()
119
  error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
120
- except requests.exceptions.JSONDecodeError:
121
  error_detail += f" Response: {e.response.text[:500]}"
122
  status_message = f"Submission Failed: {error_detail}"
123
  print(status_message)
@@ -140,42 +151,37 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
140
  return status_message, results_df
141
 
142
 
143
- # --- Build Gradio Interface using Blocks ---
144
  with gr.Blocks() as demo:
145
- gr.Markdown("# Basic Agent Evaluation Runner")
146
  gr.Markdown(
147
  """
148
  **Instructions:**
149
-
150
- 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
151
- 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
152
- 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
153
-
154
  ---
155
- **Disclaimers:**
156
- Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
157
- This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
158
  """
159
  )
160
 
161
- gr.LoginButton()
162
-
163
  run_button = gr.Button("Run Evaluation & Submit All Answers")
164
-
165
  status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
166
- # Removed max_rows=10 from DataFrame constructor
167
  results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
168
 
 
169
  run_button.click(
170
  fn=run_and_submit_all,
 
171
  outputs=[status_output, results_table]
172
  )
173
 
174
  if __name__ == "__main__":
175
  print("\n" + "-"*30 + " App Starting " + "-"*30)
176
- # Check for SPACE_HOST and SPACE_ID at startup for information
177
  space_host_startup = os.getenv("SPACE_HOST")
178
- space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
179
 
180
  if space_host_startup:
181
  print(f"✅ SPACE_HOST found: {space_host_startup}")
@@ -183,7 +189,7 @@ if __name__ == "__main__":
183
  else:
184
  print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
185
 
186
- if space_id_startup: # Print repo URLs if SPACE_ID is found
187
  print(f"✅ SPACE_ID found: {space_id_startup}")
188
  print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
189
  print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
@@ -193,4 +199,4 @@ if __name__ == "__main__":
193
  print("-"*(60 + len(" App Starting ")) + "\n")
194
 
195
  print("Launching Gradio Interface for Basic Agent Evaluation...")
196
- demo.launch(debug=True, share=False)
 
1
  import os
2
  import gradio as gr
3
  import requests
 
4
  import pandas as pd
5
+ import openai
6
+ from smolagents import CodeAgent
7
+ from smolagents.tools.duckduckgo import DuckDuckGoSearchTool
8
 
 
9
  # --- Constants ---
10
  DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
11
 
12
+ # --- SmolCodeAgent Definition with system prompt and DuckDuckGo tool ---
13
+ class SmolCodeAgent:
14
+ SYSTEM_PROMPT = """
15
+ You are a general AI assistant. I will ask you a question. Report your thoughts, and finish your answer with the following template:
16
+ FINAL ANSWER: [YOUR FINAL ANSWER].
17
+ YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list
18
+ of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list,
19
+ apply the above rules depending of whether the element to be put in the list is a number or a string.
20
+ """
21
+
22
+ def __init__(self, api_key=None, model="gpt-4o"):
23
+ if api_key is None:
24
+ api_key = os.getenv("OPENAI_API_KEY")
25
+ if not api_key:
26
+ raise RuntimeError("OPENAI_API_KEY not set in environment.")
27
+ openai.api_key = api_key
28
+ self.model = model
29
+
30
+ # Add DuckDuckGoSearchTool to tools
31
+ self.tools = [DuckDuckGoSearchTool()]
32
+ self.agent = CodeAgent(model=self.model, tools=self.tools)
33
+
34
  def __call__(self, question: str) -> str:
35
+ print(f"SmolCodeAgent received question (first 50 chars): {question[:50]}...")
36
+ try:
37
+ full_prompt = self.SYSTEM_PROMPT.strip() + "\n\nQuestion: " + question
38
+ answer = self.agent.run(full_prompt)
39
+ print(f"SmolCodeAgent answer (first 100 chars): {answer[:100]}...")
40
+ return answer
41
+ except Exception as e:
42
+ error_msg = f"AGENT ERROR: {e}"
43
+ print(error_msg)
44
+ return error_msg
45
+
46
+ # --- Main logic to run the agent on all questions and submit ---
47
+ def run_and_submit_all(profile: gr.OAuthProfile | None):
48
+ space_id = os.getenv("SPACE_ID")
49
 
50
  if profile:
51
+ username = profile.username
52
  print(f"User logged in: {username}")
53
  else:
54
  print("User not logged in.")
 
58
  questions_url = f"{api_url}/questions"
59
  submit_url = f"{api_url}/submit"
60
 
61
+ # Instantiate your SmolCodeAgent here
62
  try:
63
+ agent = SmolCodeAgent()
64
  except Exception as e:
65
  print(f"Error instantiating agent: {e}")
66
  return f"Error initializing agent: {e}", None
67
+
68
  agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
69
+ print(f"Agent code URL: {agent_code}")
70
 
71
+ # Fetch Questions
72
  print(f"Fetching questions from: {questions_url}")
73
  try:
74
  response = requests.get(questions_url, timeout=15)
75
  response.raise_for_status()
76
  questions_data = response.json()
77
  if not questions_data:
78
+ print("Fetched questions list is empty.")
79
+ return "Fetched questions list is empty or invalid format.", None
80
  print(f"Fetched {len(questions_data)} questions.")
81
+ except Exception as e:
82
  print(f"Error fetching questions: {e}")
83
  return f"Error fetching questions: {e}", None
 
 
 
 
 
 
 
84
 
85
+ # Run the agent on each question
86
  results_log = []
87
  answers_payload = []
88
  print(f"Running agent on {len(questions_data)} questions...")
 
97
  answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
98
  results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
99
  except Exception as e:
100
+ print(f"Error running agent on task {task_id}: {e}")
101
+ results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
102
 
103
  if not answers_payload:
104
  print("Agent did not produce any answers to submit.")
105
  return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
106
 
107
+ # Prepare submission data
108
  submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
109
+ print(f"Submitting {len(answers_payload)} answers for user '{username}'...")
 
110
 
111
+ # Submit answers
 
112
  try:
113
  response = requests.post(submit_url, json=submission_data, timeout=60)
114
  response.raise_for_status()
 
128
  try:
129
  error_json = e.response.json()
130
  error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
131
+ except Exception:
132
  error_detail += f" Response: {e.response.text[:500]}"
133
  status_message = f"Submission Failed: {error_detail}"
134
  print(status_message)
 
151
  return status_message, results_df
152
 
153
 
154
+ # --- Gradio UI ---
155
  with gr.Blocks() as demo:
156
+ gr.Markdown("# Basic Agent Evaluation Runner with SmolCodeAgent")
157
  gr.Markdown(
158
  """
159
  **Instructions:**
160
+ 1. Clone this space, modify the agent logic and tools.
161
+ 2. Log in to your Hugging Face account using the button below.
162
+ 3. Click 'Run Evaluation & Submit All Answers' to run the agent on all questions and submit.
 
 
163
  ---
164
+ **Note:**
165
+ Submissions may take time while the agent processes questions.
 
166
  """
167
  )
168
 
169
+ login_btn = gr.LoginButton()
 
170
  run_button = gr.Button("Run Evaluation & Submit All Answers")
 
171
  status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
 
172
  results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
173
 
174
+ # We need to pass the login profile to the function
175
  run_button.click(
176
  fn=run_and_submit_all,
177
+ inputs=[login_btn],
178
  outputs=[status_output, results_table]
179
  )
180
 
181
  if __name__ == "__main__":
182
  print("\n" + "-"*30 + " App Starting " + "-"*30)
 
183
  space_host_startup = os.getenv("SPACE_HOST")
184
+ space_id_startup = os.getenv("SPACE_ID")
185
 
186
  if space_host_startup:
187
  print(f"✅ SPACE_HOST found: {space_host_startup}")
 
189
  else:
190
  print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
191
 
192
+ if space_id_startup:
193
  print(f"✅ SPACE_ID found: {space_id_startup}")
194
  print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
195
  print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
 
199
  print("-"*(60 + len(" App Starting ")) + "\n")
200
 
201
  print("Launching Gradio Interface for Basic Agent Evaluation...")
202
+ demo.launch(debug=True, share=False)