import os import gradio as gr import requests import pandas as pd from PIL import Image import base64 import io import google.generativeai as genai from smolagents import CodeAgent, DuckDuckGoSearchTool, LiteLLMModel # System prompt used by the agent SYSTEM_PROMPT = """You are a general AI assistant. I will ask you a question. Report your thoughts, and finish your answer with just the answer — no prefixes like \"FINAL ANSWER:\". Your answer should be a number OR as few words as possible OR a comma-separated list of numbers and/or strings. If you're asked for a number, don’t use commas or units like $ or %, unless specified. If you're asked for a string, don’t use articles or abbreviations (e.g. for cities), and write digits in plain text unless told otherwise.""" DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" # Load GEMINI_API_KEY from environment GEMINI_API_KEY = os.getenv("GEMINI_API_KEY") # Agent wrapper class MyAgent: def __init__(self): model = LiteLLMModel(model_id="gemini/gemini-1.5-flash", api_key=GEMINI_API_KEY) self.agent = CodeAgent(tools=[DuckDuckGoSearchTool()], model=model) def __call__(self, question: str, code: str | None = None, excel_df: pd.DataFrame | None = None, image: Image.Image | None = None) -> str: if excel_df is not None: preview = excel_df.head().to_csv(index=False) context = f"This is a preview of the attached Excel sales data:\n\n{preview}" prompt = f"{question}\n\n{context}" return self.agent.run(prompt) elif image is not None: buffered = io.BytesIO() image.save(buffered, format="JPEG") img_b64 = base64.b64encode(buffered.getvalue()).decode("utf-8") prompt = f"{question}\n\nThis is the attached image (base64 JPEG):\n\n{img_b64}" return self.agent.run(prompt) elif code: formatted = f"{question}\n\nThoughts: Let's analyze the attached code.\nCode:\n```py\n{code}\n```" return self.agent.run(formatted) else: return self.agent.run(question) # Main evaluation function def run_and_submit_all(profile: gr.OAuthProfile | None, uploaded_code: list[gr.File] | None, uploaded_excel: list[gr.File] | None, uploaded_image: list[gr.File] | None): space_id = os.getenv("SPACE_ID") if profile: username = profile.username print(f"User logged in: {username}") else: print("User not logged in.") return "Please login to Hugging Face.", None questions_url = f"{DEFAULT_API_URL}/questions" submit_url = f"{DEFAULT_API_URL}/submit" try: agent = MyAgent() except Exception as e: return f"Error initializing agent: {e}", None try: response = requests.get(questions_url, timeout=15) response.raise_for_status() questions_data = response.json() except Exception as e: return f"Error fetching questions: {e}", None uploaded_code_str = "" if uploaded_code: try: uploaded_file = uploaded_code[0] uploaded_code_str = uploaded_file.read().decode("utf-8") except Exception as e: uploaded_code_str = f"# Failed to load uploaded code: {e}" uploaded_excel_df = None if uploaded_excel: try: uploaded_excel_df = pd.read_excel(uploaded_excel[0].name) except Exception as e: print(f"Error reading Excel: {e}") uploaded_excel_df = None uploaded_image_obj = None if uploaded_image: try: uploaded_image_obj = Image.open(uploaded_image[0].name) except Exception as e: print(f"Error loading image: {e}") uploaded_image_obj = None results_log = [] answers_payload = [] for item in questions_data: task_id = item.get("task_id") question_text = item.get("question") if not task_id or question_text is None: continue try: answer = agent( question_text, uploaded_code_str if "code" in question_text.lower() else None, uploaded_excel_df if "excel" in question_text.lower() or "spreadsheet" in question_text.lower() else None, uploaded_image_obj if "image" in question_text.lower() or "photo" in question_text.lower() or "jpg" in question_text.lower() else None ) answers_payload.append({"task_id": task_id, "submitted_answer": answer}) results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": answer}) except Exception as e: results_log.append({ "Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}" }) if not answers_payload: return "Agent did not return any answers.", pd.DataFrame(results_log) submission_data = { "username": profile.username.strip(), "agent_code": f"https://huggingface.co/spaces/{space_id}/tree/main", "answers": answers_payload } try: response = requests.post(submit_url, json=submission_data, timeout=60) response.raise_for_status() result_data = response.json() final_status = ( f"Submission Successful!\n" f"User: {result_data.get('username')}\n" f"Score: {result_data.get('score', 'N/A')}% " f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" f"Message: {result_data.get('message', 'No message received.')}" ) return final_status, pd.DataFrame(results_log) except Exception as e: return f"Submission failed: {e}", pd.DataFrame(results_log) # Gradio UI setup with gr.Blocks() as demo: gr.Markdown("# Basic Agent Evaluation Runner") gr.Markdown(""" **Instructions:** 1. Clone this space and configure your Gemini API key. 2. Log in to Hugging Face. 3. Optionally upload Python code, Excel file, or image used by the questions. 4. Run your agent on evaluation tasks and submit answers. """) gr.LoginButton() code_upload = gr.File(label="Upload Python code file", file_types=[".py"]) excel_upload = gr.File(label="Upload Excel file", file_types=[".xls", ".xlsx"]) image_upload = gr.File(label="Upload Image file", file_types=[".jpg", ".jpeg"]) run_button = gr.Button("Run Evaluation & Submit All Answers") status_output = gr.Textbox(label="Submission Result", lines=5, interactive=False) results_table = gr.DataFrame(label="Results", wrap=True) run_button.click( fn=run_and_submit_all, inputs=[gr.OAuthProfile(), code_upload, excel_upload, image_upload], outputs=[status_output, results_table] ) if __name__ == "__main__": print("🔧 App starting...") demo.launch(debug=True, share=False)