adilos1 commited on
Commit
a9aeea6
·
verified ·
1 Parent(s): 6d3ae42

Setup App.py for 4th Agent

Browse files
Files changed (1) hide show
  1. app.py +126 -170
app.py CHANGED
@@ -1,196 +1,152 @@
 
 
1
  import os
2
  import gradio as gr
3
  import requests
4
- import inspect
5
  import pandas as pd
6
 
7
- # (Keep Constants as is)
8
- # --- Constants ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
  DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
10
 
11
- # --- Basic Agent Definition ---
12
- # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
13
- class BasicAgent:
14
  def __init__(self):
15
- print("BasicAgent initialized.")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
  def __call__(self, question: str) -> str:
17
- print(f"Agent received question (first 50 chars): {question[:50]}...")
18
- fixed_answer = "This is a default answer."
19
- print(f"Agent returning fixed answer: {fixed_answer}")
20
- return fixed_answer
21
-
22
- def run_and_submit_all( profile: gr.OAuthProfile | None):
23
- """
24
- Fetches all questions, runs the BasicAgent on them, submits all answers,
25
- and displays the results.
26
- """
27
- # --- Determine HF Space Runtime URL and Repo URL ---
28
- space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
29
 
30
  if profile:
31
- username= f"{profile.username}"
32
  print(f"User logged in: {username}")
33
  else:
34
  print("User not logged in.")
35
- return "Please Login to Hugging Face with the button.", None
36
-
37
- api_url = DEFAULT_API_URL
38
- questions_url = f"{api_url}/questions"
39
- submit_url = f"{api_url}/submit"
40
-
41
- # 1. Instantiate Agent ( modify this part to create your agent)
42
- try:
43
- agent = BasicAgent()
44
- except Exception as e:
45
- print(f"Error instantiating agent: {e}")
46
- return f"Error initializing agent: {e}", None
47
- # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
48
- agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
49
- print(agent_code)
50
-
51
- # 2. Fetch Questions
52
- print(f"Fetching questions from: {questions_url}")
53
- try:
54
- response = requests.get(questions_url, timeout=15)
55
- response.raise_for_status()
56
- questions_data = response.json()
57
- if not questions_data:
58
- print("Fetched questions list is empty.")
59
- return "Fetched questions list is empty or invalid format.", None
60
- print(f"Fetched {len(questions_data)} questions.")
61
- except requests.exceptions.RequestException as e:
62
- print(f"Error fetching questions: {e}")
63
- return f"Error fetching questions: {e}", None
64
- except requests.exceptions.JSONDecodeError as e:
65
- print(f"Error decoding JSON response from questions endpoint: {e}")
66
- print(f"Response text: {response.text[:500]}")
67
- return f"Error decoding server response for questions: {e}", None
68
- except Exception as e:
69
- print(f"An unexpected error occurred fetching questions: {e}")
70
- return f"An unexpected error occurred fetching questions: {e}", None
71
-
72
- # 3. Run your Agent
73
  results_log = []
74
  answers_payload = []
75
- print(f"Running agent on {len(questions_data)} questions...")
76
- for item in questions_data:
77
- task_id = item.get("task_id")
78
- question_text = item.get("question")
79
- if not task_id or question_text is None:
80
- print(f"Skipping item with missing task_id or question: {item}")
81
- continue
82
- try:
83
- submitted_answer = agent(question_text)
84
- answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
85
- results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
86
- except Exception as e:
87
- print(f"Error running agent on task {task_id}: {e}")
88
- results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
 
 
89
 
90
  if not answers_payload:
91
- print("Agent did not produce any answers to submit.")
92
- return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
93
-
94
- # 4. Prepare Submission
95
- submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
96
- status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
97
- print(status_update)
98
-
99
- # 5. Submit
100
- print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
101
- try:
102
- response = requests.post(submit_url, json=submission_data, timeout=60)
103
- response.raise_for_status()
104
- result_data = response.json()
105
- final_status = (
106
- f"Submission Successful!\n"
107
- f"User: {result_data.get('username')}\n"
108
- f"Overall Score: {result_data.get('score', 'N/A')}% "
109
- f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
110
- f"Message: {result_data.get('message', 'No message received.')}"
111
- )
112
- print("Submission successful.")
113
- results_df = pd.DataFrame(results_log)
114
- return final_status, results_df
115
- except requests.exceptions.HTTPError as e:
116
- error_detail = f"Server responded with status {e.response.status_code}."
117
- try:
118
- error_json = e.response.json()
119
- error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
120
- except requests.exceptions.JSONDecodeError:
121
- error_detail += f" Response: {e.response.text[:500]}"
122
- status_message = f"Submission Failed: {error_detail}"
123
- print(status_message)
124
- results_df = pd.DataFrame(results_log)
125
- return status_message, results_df
126
- except requests.exceptions.Timeout:
127
- status_message = "Submission Failed: The request timed out."
128
- print(status_message)
129
- results_df = pd.DataFrame(results_log)
130
- return status_message, results_df
131
- except requests.exceptions.RequestException as e:
132
- status_message = f"Submission Failed: Network error - {e}"
133
- print(status_message)
134
- results_df = pd.DataFrame(results_log)
135
- return status_message, results_df
136
- except Exception as e:
137
- status_message = f"An unexpected error occurred during submission: {e}"
138
- print(status_message)
139
- results_df = pd.DataFrame(results_log)
140
- return status_message, results_df
141
-
142
-
143
- # --- Build Gradio Interface using Blocks ---
144
  with gr.Blocks() as demo:
145
- gr.Markdown("# Basic Agent Evaluation Runner")
146
- gr.Markdown(
147
- """
148
- **Instructions:**
149
-
150
- 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
151
- 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
152
- 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
153
-
154
- ---
155
- **Disclaimers:**
156
- Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
157
- This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
158
- """
159
- )
160
 
161
- gr.LoginButton()
 
 
 
 
162
 
 
163
  run_button = gr.Button("Run Evaluation & Submit All Answers")
 
 
164
 
165
- status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
166
- # Removed max_rows=10 from DataFrame constructor
167
- results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
168
-
169
- run_button.click(
170
- fn=run_and_submit_all,
171
- outputs=[status_output, results_table]
172
- )
173
 
174
  if __name__ == "__main__":
175
- print("\n" + "-"*30 + " App Starting " + "-"*30)
176
- # Check for SPACE_HOST and SPACE_ID at startup for information
177
- space_host_startup = os.getenv("SPACE_HOST")
178
- space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
179
-
180
- if space_host_startup:
181
- print(f"✅ SPACE_HOST found: {space_host_startup}")
182
- print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
183
- else:
184
- print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
185
-
186
- if space_id_startup: # Print repo URLs if SPACE_ID is found
187
- print(f"✅ SPACE_ID found: {space_id_startup}")
188
- print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
189
- print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
190
- else:
191
- print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
192
-
193
- print("-"*(60 + len(" App Starting ")) + "\n")
194
-
195
- print("Launching Gradio Interface for Basic Agent Evaluation...")
196
  demo.launch(debug=True, share=False)
 
1
+
2
+
3
  import os
4
  import gradio as gr
5
  import requests
 
6
  import pandas as pd
7
 
8
+ from smolagents import LiteLLMModel, CodeAgent, DuckDuckGoSearchTool
9
+ from gaia_tools import ReverseTextTool, RunPythonFileTool, download_server
10
+
11
+ # System prompt for the agent
12
+ SYSTEM_PROMPT = """You are a general AI assistant. I will ask you a question.
13
+ Report your thoughts, and finish your answer with just the answer — no prefixes like "FINAL ANSWER:".
14
+ Your answer should be a number OR as few words as possible OR a comma-separated list of numbers and/or strings.
15
+ If you're asked for a number, don’t use commas or units like $ or %, unless specified.
16
+ If you're asked for a string, don’t use articles or abbreviations (e.g. for cities), and write digits in plain text unless told otherwise.
17
+
18
+ Tool Use Guidelines:
19
+ 1. Do **not** use any tools outside of the provided tools list.
20
+ 2. Always use **only one tool at a time** in each step of your execution.
21
+ 3. If the question refers to a `.py` file or uploaded Python script, use **RunPythonFileTool** to execute it and base your answer on its output.
22
+ 4. If the question looks reversed (starts with a period or reads backward), first use **ReverseTextTool** to reverse it, then process the question.
23
+ 5. For logic or word puzzles, solve them directly unless they are reversed — in which case, decode first using **ReverseTextTool**.
24
+ 6. When dealing with Excel files, prioritize using the **excel** tool over writing code in **terminal-controller**.
25
+ 7. If you need to download a file, always use the **download_server** tool and save it to the correct path.
26
+ 8. Even for complex tasks, assume a solution exists. If one method fails, try another approach using different tools.
27
+ 9. Due to context length limits, keep browser-based tasks (e.g., searches) as short and efficient as possible.
28
+ """
29
+
30
  DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
31
 
32
+ # Agent wrapper using LiteLLMModel
33
+ class MyAgent:
 
34
  def __init__(self):
35
+ gemini_api_key = os.getenv("GEMINI_API_KEY")
36
+ if not gemini_api_key:
37
+ raise ValueError("GEMINI_API_KEY not set in environment variables.")
38
+
39
+ self.model = LiteLLMModel(
40
+ model_id="gemini/gemini-2.0-flash-lite",
41
+ api_key=gemini_api_key,
42
+ system_prompt=SYSTEM_PROMPT
43
+ )
44
+
45
+ self.agent = CodeAgent(
46
+ tools=[
47
+ DuckDuckGoSearchTool(),
48
+ ReverseTextTool,
49
+ RunPythonFileTool,
50
+ download_server
51
+ ],
52
+ model=self.model,
53
+ add_base_tools=True,
54
+ )
55
+
56
  def __call__(self, question: str) -> str:
57
+ return self.agent.run(question)
58
+
59
+ # Main evaluation function
60
+ def run_and_submit_all(profile: gr.OAuthProfile | None):
61
+ space_id = os.getenv("SPACE_ID")
 
 
 
 
 
 
 
62
 
63
  if profile:
64
+ username = profile.username
65
  print(f"User logged in: {username}")
66
  else:
67
  print("User not logged in.")
68
+ return "Please login to Hugging Face.", None
69
+
70
+ questions_url = f"{DEFAULT_API_URL}/questions"
71
+ submit_url = f"{DEFAULT_API_URL}/submit"
72
+
73
+ print(questions_url, submit_url, space_id, username)
74
+
75
+ # try:
76
+ # agent = MyAgent()
77
+ # except Exception as e:
78
+ # return f"Error initializing agent: {e}", None
79
+
80
+ # try:
81
+ # response = requests.get(questions_url, timeout=15)
82
+ # response.raise_for_status()
83
+ # questions_data = response.json()
84
+ # except Exception as e:
85
+ # return f"Error fetching questions: {e}", None
86
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87
  results_log = []
88
  answers_payload = []
89
+
90
+ # for item in questions_data:
91
+ # task_id = item.get("task_id")
92
+ # question_text = item.get("question")
93
+ # if not task_id or question_text is None:
94
+ # continue
95
+ # try:
96
+ # submitted_answer = agent(question_text)
97
+ # answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
98
+ # results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
99
+ # except Exception as e:
100
+ # results_log.append({
101
+ # "Task ID": task_id,
102
+ # "Question": question_text,
103
+ # "Submitted Answer": f"AGENT ERROR: {e}"
104
+ # })
105
 
106
  if not answers_payload:
107
+ return "Agent did not return any answers.", pd.DataFrame(results_log)
108
+
109
+ submission_data = {
110
+ "username": profile.username.strip(),
111
+ "agent_code": f"https://huggingface.co/spaces/{space_id}/tree/main",
112
+ "answers": answers_payload
113
+ }
114
+
115
+ print(submission_data, "submission data")
116
+
117
+ # try:
118
+ # response = requests.post(submit_url, json=submission_data, timeout=60)
119
+ # response.raise_for_status()
120
+ # result_data = response.json()
121
+ # final_status = (
122
+ # f"Submission Successful!\n"
123
+ # f"User: {result_data.get('username')}\n"
124
+ # f"Score: {result_data.get('score', 'N/A')}% "
125
+ # f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
126
+ # f"Message: {result_data.get('message', 'No message received.')}"
127
+ # )
128
+ # return final_status, pd.DataFrame(results_log)
129
+ # except Exception as e:
130
+ # return f"Submission failed: {e}", pd.DataFrame(results_log)
131
+
132
+ # Gradio UI setup
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
133
  with gr.Blocks() as demo:
134
+ gr.Markdown("""
135
+ # Agent Evaluation Running
 
 
 
 
 
 
 
 
 
 
 
 
 
136
 
137
+ **Instructions:**
138
+ 1. Configure your Gemini API key.
139
+ 2. Log in to Hugging Face.
140
+ 3. Run your agent on evaluation tasks and submit answers.
141
+ """)
142
 
143
+ gr.LoginButton()
144
  run_button = gr.Button("Run Evaluation & Submit All Answers")
145
+ status_output = gr.Textbox(label="Submission Result", lines=5, interactive=False)
146
+ results_table = gr.DataFrame(label="Results", wrap=True)
147
 
148
+ run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])
 
 
 
 
 
 
 
149
 
150
  if __name__ == "__main__":
151
+ print("🔧 App starting...")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
152
  demo.launch(debug=True, share=False)