Upload 3 files
Browse files- app.py +59 -0
- model.py +56 -0
- siamese_model.pth +3 -0
app.py
ADDED
|
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import torch
|
| 3 |
+
from PIL import Image
|
| 4 |
+
import torchvision.transforms as transforms
|
| 5 |
+
from model import SiameseNetwork # Ensure this file exists with the model definition
|
| 6 |
+
|
| 7 |
+
# Define the device (GPU or CPU)
|
| 8 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 9 |
+
|
| 10 |
+
# Load the pre-trained Siamese model
|
| 11 |
+
model = SiameseNetwork().to(device)
|
| 12 |
+
model.load_state_dict(torch.load("siamese_model.pth", map_location=device))
|
| 13 |
+
model.eval()
|
| 14 |
+
|
| 15 |
+
# Define data transformation (resize, convert to tensor, normalize if needed)
|
| 16 |
+
transform = transforms.Compose([
|
| 17 |
+
transforms.Resize((100, 100)), # Resize to match the input size of the model
|
| 18 |
+
transforms.Grayscale(num_output_channels=1), # Convert images to grayscale for signature comparison
|
| 19 |
+
transforms.ToTensor(), # Convert image to tensor
|
| 20 |
+
])
|
| 21 |
+
|
| 22 |
+
# Streamlit interface
|
| 23 |
+
st.title("Signature Forgery Detection with Siamese Network")
|
| 24 |
+
st.write("Upload two signature images to check if they are from the same person or if one is forged.")
|
| 25 |
+
|
| 26 |
+
# Upload images
|
| 27 |
+
image1 = st.file_uploader("Upload First Signature Image", type=["png", "jpg", "jpeg"])
|
| 28 |
+
image2 = st.file_uploader("Upload Second Signature Image", type=["png", "jpg", "jpeg"])
|
| 29 |
+
|
| 30 |
+
if image1 and image2:
|
| 31 |
+
# Load and transform the images
|
| 32 |
+
img1 = Image.open(image1).convert("RGB")
|
| 33 |
+
img2 = Image.open(image2).convert("RGB")
|
| 34 |
+
|
| 35 |
+
# Display images
|
| 36 |
+
col1, col2 = st.columns(2)
|
| 37 |
+
with col1:
|
| 38 |
+
st.image(img1, caption='First Signature Image', use_container_width=True)
|
| 39 |
+
with col2:
|
| 40 |
+
st.image(img2, caption='Second Signature Image', use_container_width=True)
|
| 41 |
+
|
| 42 |
+
# Transform the images before feeding them into the model
|
| 43 |
+
img1 = transform(img1).unsqueeze(0).to(device)
|
| 44 |
+
img2 = transform(img2).unsqueeze(0).to(device)
|
| 45 |
+
|
| 46 |
+
# Predict similarity using the Siamese model
|
| 47 |
+
output1, output2 = model(img1, img2)
|
| 48 |
+
euclidean_distance = torch.nn.functional.pairwise_distance(output1, output2)
|
| 49 |
+
|
| 50 |
+
# Set a threshold for similarity (can be tuned based on model performance)
|
| 51 |
+
threshold = 0.5 # You can adjust this threshold based on your model's performance
|
| 52 |
+
|
| 53 |
+
# Display similarity score and interpretation
|
| 54 |
+
st.success(f'Similarity Score (Euclidean Distance): {euclidean_distance.item():.4f}')
|
| 55 |
+
if euclidean_distance.item() < threshold:
|
| 56 |
+
st.write("The signatures are likely from the **same person**.")
|
| 57 |
+
else:
|
| 58 |
+
st.write("The signatures **do not match**, one might be **forged**.")
|
| 59 |
+
|
model.py
ADDED
|
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
|
| 4 |
+
class SiameseNetwork(nn.Module):
|
| 5 |
+
def __init__(self):
|
| 6 |
+
super(SiameseNetwork, self).__init__()
|
| 7 |
+
|
| 8 |
+
self.cnn1 = nn.Sequential(
|
| 9 |
+
nn.Conv2d(1, 96, kernel_size=11, stride=1),
|
| 10 |
+
nn.ReLU(inplace=True),
|
| 11 |
+
nn.LocalResponseNorm(5, alpha=0.0001, beta=0.75, k=2),
|
| 12 |
+
nn.MaxPool2d(3, stride=2),
|
| 13 |
+
|
| 14 |
+
nn.Conv2d(96, 256, kernel_size=5, stride=1, padding=2),
|
| 15 |
+
nn.ReLU(inplace=True),
|
| 16 |
+
nn.LocalResponseNorm(5, alpha=0.0001, beta=0.75, k=2),
|
| 17 |
+
nn.MaxPool2d(3, stride=2),
|
| 18 |
+
nn.Dropout2d(p=0.3),
|
| 19 |
+
|
| 20 |
+
nn.Conv2d(256, 384, kernel_size=3, stride=1, padding=1),
|
| 21 |
+
nn.ReLU(inplace=True),
|
| 22 |
+
|
| 23 |
+
nn.Conv2d(384, 256, kernel_size=3, stride=1, padding=1),
|
| 24 |
+
nn.ReLU(inplace=True),
|
| 25 |
+
nn.MaxPool2d(3, stride=2),
|
| 26 |
+
nn.Dropout2d(p=0.3),
|
| 27 |
+
)
|
| 28 |
+
|
| 29 |
+
self.fc1 = nn.Sequential(
|
| 30 |
+
nn.Linear(25600, 1024),
|
| 31 |
+
nn.ReLU(inplace=True),
|
| 32 |
+
nn.Dropout2d(p=0.5),
|
| 33 |
+
|
| 34 |
+
nn.Linear(1024, 128),
|
| 35 |
+
nn.ReLU(inplace=True),
|
| 36 |
+
|
| 37 |
+
nn.Linear(128, 2)
|
| 38 |
+
)
|
| 39 |
+
|
| 40 |
+
def forward_once(self, x):
|
| 41 |
+
output = self.cnn1(x)
|
| 42 |
+
output = output.view(output.size()[0], -1)
|
| 43 |
+
output = self.fc1(output)
|
| 44 |
+
return output
|
| 45 |
+
|
| 46 |
+
def forward(self, input1, input2):
|
| 47 |
+
output1 = self.forward_once(input1)
|
| 48 |
+
output2 = self.forward_once(input2)
|
| 49 |
+
return output1, output2
|
| 50 |
+
|
| 51 |
+
# Function to load the trained model
|
| 52 |
+
def load_model(model_path):
|
| 53 |
+
model = SiameseNetwork()
|
| 54 |
+
model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))
|
| 55 |
+
model.eval()
|
| 56 |
+
return model
|
siamese_model.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a674d49cdc8ca78544b7f1dfe7caf50b63650657c4d9e07badf0db5b3a512c07
|
| 3 |
+
size 114978840
|