Spaces:
Sleeping
Sleeping
Update main.py
Browse files
main.py
CHANGED
@@ -1,63 +1,63 @@
|
|
1 |
-
import os
|
2 |
-
import google.generativeai as genai
|
3 |
-
from playwright.async_api import async_playwright
|
4 |
-
from dotenv import load_dotenv
|
5 |
-
from fastapi import FastAPI, HTTPException
|
6 |
-
from pydantic import BaseModel
|
7 |
-
import uvicorn
|
8 |
-
import asyncio
|
9 |
-
import json
|
10 |
-
|
11 |
-
# Load environment variables
|
12 |
-
load_dotenv()
|
13 |
-
|
14 |
-
# Configure Google Generative AI API key
|
15 |
-
genai.configure(api_key=os.environ["API_KEY"])
|
16 |
-
|
17 |
-
# FastAPI app initialization
|
18 |
-
app = FastAPI()
|
19 |
-
|
20 |
-
# Function to scrape webpage and extract visible text
|
21 |
-
async def scrape_visible_text(url):
|
22 |
-
async with async_playwright() as p:
|
23 |
-
browser = await p.chromium.launch(headless=True) # Launch browser in headless mode
|
24 |
-
context = await browser.new_context(
|
25 |
-
user_agent="Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/85.0.4183.121 Safari/537.36",
|
26 |
-
viewport={"width": 1280, "height": 800}
|
27 |
-
)
|
28 |
-
page = await context.new_page()
|
29 |
-
await page.goto(url, wait_until="networkidle")
|
30 |
-
visible_text = await page.evaluate("document.body.innerText")
|
31 |
-
await browser.close()
|
32 |
-
return visible_text
|
33 |
-
|
34 |
-
# Function to structure data using Google's Gemini model
|
35 |
-
def structure_data(text, college_name):
|
36 |
-
prompt = f"Convert the following unstructured text into a structured format with the titles and content containing the data. Properly structure tables and general text. The structured data should contain details only about the college named '{college_name}':\n{text}"
|
37 |
-
model = genai.GenerativeModel("gemini-1.5-flash")
|
38 |
-
response = model.generate_content(prompt)
|
39 |
-
return response.text.strip()
|
40 |
-
|
41 |
-
# Pydantic model for request body
|
42 |
-
class URLRequest(BaseModel):
|
43 |
-
url: str
|
44 |
-
college_name: str
|
45 |
-
|
46 |
-
# FastAPI endpoint to scrape and structure data
|
47 |
-
@app.post("/scrape")
|
48 |
-
async def scrape_and_structure_data(request: URLRequest):
|
49 |
-
try:
|
50 |
-
# Scrape visible text from the webpage
|
51 |
-
visible_text = await scrape_visible_text(request.url)
|
52 |
-
|
53 |
-
# Structure the data using Google's Gemini model
|
54 |
-
structured_data = structure_data(visible_text, request.college_name)
|
55 |
-
|
56 |
-
# Return the structured data
|
57 |
-
return {"structured_data": structured_data}
|
58 |
-
except Exception as e:
|
59 |
-
print(f"Error occurred while processing the request: {e}")
|
60 |
-
raise HTTPException(status_code=500, detail=str(e))
|
61 |
-
|
62 |
-
if __name__ == "__main__":
|
63 |
-
uvicorn.run(app, host="0.0.0.0", port=
|
|
|
1 |
+
import os
|
2 |
+
import google.generativeai as genai
|
3 |
+
from playwright.async_api import async_playwright
|
4 |
+
from dotenv import load_dotenv
|
5 |
+
from fastapi import FastAPI, HTTPException
|
6 |
+
from pydantic import BaseModel
|
7 |
+
import uvicorn
|
8 |
+
import asyncio
|
9 |
+
import json
|
10 |
+
|
11 |
+
# Load environment variables
|
12 |
+
load_dotenv()
|
13 |
+
|
14 |
+
# Configure Google Generative AI API key
|
15 |
+
genai.configure(api_key=os.environ["API_KEY"])
|
16 |
+
|
17 |
+
# FastAPI app initialization
|
18 |
+
app = FastAPI()
|
19 |
+
|
20 |
+
# Function to scrape webpage and extract visible text
|
21 |
+
async def scrape_visible_text(url):
|
22 |
+
async with async_playwright() as p:
|
23 |
+
browser = await p.chromium.launch(headless=True) # Launch browser in headless mode
|
24 |
+
context = await browser.new_context(
|
25 |
+
user_agent="Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/85.0.4183.121 Safari/537.36",
|
26 |
+
viewport={"width": 1280, "height": 800}
|
27 |
+
)
|
28 |
+
page = await context.new_page()
|
29 |
+
await page.goto(url, wait_until="networkidle")
|
30 |
+
visible_text = await page.evaluate("document.body.innerText")
|
31 |
+
await browser.close()
|
32 |
+
return visible_text
|
33 |
+
|
34 |
+
# Function to structure data using Google's Gemini model
|
35 |
+
def structure_data(text, college_name):
|
36 |
+
prompt = f"Convert the following unstructured text into a structured format with the titles and content containing the data. Properly structure tables and general text. The structured data should contain details only about the college named '{college_name}':\n{text}"
|
37 |
+
model = genai.GenerativeModel("gemini-1.5-flash")
|
38 |
+
response = model.generate_content(prompt)
|
39 |
+
return response.text.strip()
|
40 |
+
|
41 |
+
# Pydantic model for request body
|
42 |
+
class URLRequest(BaseModel):
|
43 |
+
url: str
|
44 |
+
college_name: str
|
45 |
+
|
46 |
+
# FastAPI endpoint to scrape and structure data
|
47 |
+
@app.post("/scrape")
|
48 |
+
async def scrape_and_structure_data(request: URLRequest):
|
49 |
+
try:
|
50 |
+
# Scrape visible text from the webpage
|
51 |
+
visible_text = await scrape_visible_text(request.url)
|
52 |
+
|
53 |
+
# Structure the data using Google's Gemini model
|
54 |
+
structured_data = structure_data(visible_text, request.college_name)
|
55 |
+
|
56 |
+
# Return the structured data
|
57 |
+
return {"structured_data": structured_data}
|
58 |
+
except Exception as e:
|
59 |
+
print(f"Error occurred while processing the request: {e}")
|
60 |
+
raise HTTPException(status_code=500, detail=str(e))
|
61 |
+
|
62 |
+
if __name__ == "__main__":
|
63 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|