File size: 5,555 Bytes
cdd85c7 9b7aea8 cdd85c7 9b7aea8 cdd85c7 9b7aea8 cdd85c7 9b7aea8 cdd85c7 9b7aea8 cdd85c7 e0f90ab cdd85c7 9b7aea8 e0f90ab cdd85c7 9b7aea8 cdd85c7 e0f90ab cdd85c7 9b7aea8 e6eebe9 9b7aea8 cdd85c7 9b7aea8 cdd85c7 e6eebe9 9b7aea8 cdd85c7 9b7aea8 cdd85c7 9b7aea8 cdd85c7 9b7aea8 cdd85c7 9b7aea8 cdd85c7 e0f90ab 9b7aea8 cdd85c7 9b7aea8 cdd85c7 9b7aea8 cdd85c7 9b7aea8 e0f90ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
import os
import re
import logging
from typing import List, Dict, Tuple
import chromadb
from chromadb.utils import embedding_functions
from config import EMBEDDING_MODEL, DATABASE_DIR
# Konfiguracja logowania
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
class KodeksProcessor:
def __init__(self):
logging.info("Inicjalizacja klienta bazy danych...")
self.client = chromadb.PersistentClient(path=DATABASE_DIR)
try:
self.collection = self.client.get_collection("kodeksy")
logging.info("Pobrano istniej膮c膮 kolekcj臋 'kodeksy'.")
except:
self.collection = self.client.create_collection(
name="kodeksy",
embedding_function=embedding_functions.SentenceTransformerEmbeddingFunction(
model_name=EMBEDDING_MODEL
)
)
logging.info("Utworzono now膮 kolekcj臋 'kodeksy'.")
def extract_metadata(self, text: str) -> Dict:
metadata = {}
dz_u_match = re.search(r'Dz\.U\.(\d{4})\.(\d+)\.(\d+)', text)
if dz_u_match:
metadata['dz_u'] = f"Dz.U.{dz_u_match.group(1)}.{dz_u_match.group(2)}.{dz_u_match.group(3)}"
metadata['rok'] = dz_u_match.group(1)
nazwa_match = re.search(r'USTAWA\s+z dnia(.*?)\n(.*?)\n', text)
if nazwa_match:
metadata['data_ustawy'] = nazwa_match.group(1).strip()
metadata['nazwa'] = nazwa_match.group(2).strip()
logging.info("Wydobyto metadane: %s", metadata)
return metadata
def split_header_and_content(self, text: str) -> Tuple[str, str]:
parts = text.split("USTAWA", 1)
if len(parts) > 1:
return parts[0], "USTAWA" + parts[1]
return "", text
def process_article(self, article_text: str) -> Dict:
art_num_match = re.match(r'Art\.\s*(\d+)', article_text)
article_num = art_num_match.group(1) if art_num_match else ""
paragraphs = re.findall(r'搂\s*(\d+)\.\s*(.*?)(?=搂\s*\d+|Art\.\s*\d+|$)', article_text, re.DOTALL)
if not paragraphs:
return {
"article_num": article_num,
"content": article_text.strip(),
"has_paragraphs": False
}
return {
"article_num": article_num,
"paragraphs": paragraphs,
"has_paragraphs": True
}
def split_into_chunks(self, text: str, metadata: Dict) -> List[Dict]:
chunks = []
articles = re.split(r'(Art\.\s*\d+)', text) # Podzia艂 na artyku艂y
for i in range(1, len(articles), 2): # Przechodzimy przez artyku艂y
article_title = articles[i].strip()
article_content = articles[i + 1].strip() if i + 1 < len(articles) else ""
processed_article = self.process_article(article_title + " " + article_content)
chunk_metadata = {
**metadata,
"article": processed_article["article_num"]
}
if processed_article["has_paragraphs"]:
for par_num, par_content in processed_article["paragraphs"]:
chunks.append({
"text": f"{article_title} 搂{par_num}. {par_content.strip()}",
"metadata": {**chunk_metadata, "paragraph": par_num}
})
else:
chunks.append({
"text": processed_article["content"],
"metadata": chunk_metadata
})
logging.info("Podzielono tekst na %d chunk贸w.", len(chunks))
return chunks
def process_file(self, filepath: str) -> None:
logging.info("Przetwarzanie pliku: %s", filepath)
with open(filepath, 'r', encoding='utf-8') as file:
content = file.read()
header, main_content = self.split_header_and_content(content)
metadata = self.extract_metadata(main_content)
metadata['filename'] = os.path.basename(filepath)
chunks = self.split_into_chunks(main_content, metadata)
for i, chunk in enumerate(chunks):
self.collection.add(
documents=[chunk["text"]],
metadatas=[chunk["metadata"]],
ids=[f"{metadata['filename']}_{chunk['metadata']['article']}_{i}"]
)
logging.info("Dodano chunk: %s", chunk["text"]) # Logowanie dodawanych chunk贸w
logging.info("Dodano %d chunk贸w z pliku %s", len(chunks), metadata['filename'])
def process_all_files(self, directory: str) -> None:
logging.info("Rozpocz臋cie przetwarzania wszystkich plik贸w w katalogu: %s", directory)
for filename in os.listdir(directory):
if filename.endswith('.txt'):
filepath = os.path.join(directory, filename)
self.process_file(filepath)
def search(self, query: str, n_results: int = 3) -> Dict:
logging.info("Wyszukiwanie w bazie danych dla zapytania: %s", query)
results = self.collection.query(
query_texts=[query],
n_results=n_results
)
logging.info("Znaleziono %d wynik贸w dla zapytania: %s", len(results['documents'][0]), query)
return results
def list_all_documents(self) -> None:
all_docs = self.collection.query(query_texts=[""], n_results=1000) # Pobierz wszystkie dokumenty
for doc in all_docs['documents'][0]:
logging.info("Dokument: %s", doc) |