|
import streamlit as st |
|
import json |
|
import os |
|
from sentence_transformers import SentenceTransformer, util |
|
import torch |
|
|
|
|
|
@st.cache_resource |
|
def load_data(file_path): |
|
with open(file_path, 'r', encoding='utf-8') as f: |
|
return json.load(f) |
|
|
|
|
|
@st.cache_resource |
|
def load_model(): |
|
return SentenceTransformer('distiluse-base-multilingual-cased-v1') |
|
|
|
def search_relevant_chunks(query, chunks, model, top_k=3): |
|
query_embedding = model.encode(query, convert_to_tensor=True) |
|
chunk_embeddings = model.encode([chunk['text'] for chunk in chunks], convert_to_tensor=True) |
|
|
|
cos_scores = util.pytorch_cos_sim(query_embedding, chunk_embeddings)[0] |
|
top_results = torch.topk(cos_scores, k=top_k) |
|
|
|
return [chunks[idx] for idx in top_results.indices] |
|
|
|
def main(): |
|
st.title("Chatbot Prawny") |
|
|
|
|
|
data_file = "processed_kodeksy.json" |
|
if not os.path.exists(data_file): |
|
st.error(f"Plik {data_file} nie istnieje. Najpierw przetw贸rz dane kodeks贸w.") |
|
return |
|
|
|
chunks = load_data(data_file) |
|
model = load_model() |
|
|
|
|
|
if "messages" not in st.session_state: |
|
st.session_state.messages = [] |
|
|
|
|
|
for message in st.session_state.messages: |
|
with st.chat_message(message["role"]): |
|
st.markdown(message["content"]) |
|
|
|
|
|
if prompt := st.chat_input("Zadaj pytanie dotycz膮ce prawa..."): |
|
st.session_state.messages.append({"role": "user", "content": prompt}) |
|
with st.chat_message("user"): |
|
st.markdown(prompt) |
|
|
|
|
|
relevant_chunks = search_relevant_chunks(prompt, chunks, model) |
|
|
|
|
|
response = "Oto co znalaz艂em w kodeksie:\n\n" |
|
for chunk in relevant_chunks: |
|
response += f"**{chunk['metadata']['nazwa']} - Artyku艂 {chunk['metadata']['article']}**\n" |
|
response += f"{chunk['text']}\n\n" |
|
|
|
|
|
with st.chat_message("assistant"): |
|
st.markdown(response) |
|
st.session_state.messages.append({"role": "assistant", "content": response}) |
|
|
|
|
|
with st.sidebar: |
|
st.subheader("Opcje") |
|
if st.button("Wyczy艣膰 histori臋 czatu"): |
|
st.session_state.messages = [] |
|
st.experimental_rerun() |
|
|
|
st.subheader("Informacje o bazie danych") |
|
st.write(f"Liczba chunk贸w: {len(chunks)}") |
|
st.write(f"Przyk艂adowy chunk:") |
|
st.json(chunks[0] if chunks else {}) |
|
|
|
if __name__ == "__main__": |
|
main() |