Update app.py
Browse files
app.py
CHANGED
@@ -4,7 +4,6 @@ import os
|
|
4 |
from sentence_transformers import SentenceTransformer, util
|
5 |
import torch
|
6 |
from huggingface_hub import InferenceClient
|
7 |
-
import asyncio
|
8 |
|
9 |
# Load the Hugging Face token from environment variable
|
10 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
@@ -22,12 +21,12 @@ def load_data(file_path):
|
|
22 |
def load_model():
|
23 |
return SentenceTransformer('distiluse-base-multilingual-cased-v1')
|
24 |
|
25 |
-
|
26 |
client = InferenceClient(token=HF_TOKEN)
|
27 |
|
28 |
prompt = f"Na podstawie poniższego pytania, wygeneruj 3-5 słów kluczowych, które najlepiej opisują główne tematy i koncepcje prawne zawarte w pytaniu. Podaj tylko słowa kluczowe, oddzielone przecinkami.\n\nPytanie: {query}\n\nSłowa kluczowe:"
|
29 |
|
30 |
-
response =
|
31 |
model="Qwen/Qwen2.5-72B-Instruct",
|
32 |
prompt=prompt,
|
33 |
max_new_tokens=50,
|
@@ -38,7 +37,16 @@ async def generate_keywords(query):
|
|
38 |
keywords = [keyword.strip() for keyword in response.split(',')]
|
39 |
return keywords
|
40 |
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
client = InferenceClient(token=HF_TOKEN)
|
43 |
|
44 |
context = "Kontekst prawny:\n\n"
|
@@ -48,27 +56,15 @@ async def generate_ai_response(query, relevant_chunks):
|
|
48 |
|
49 |
prompt = f"Jesteś asystentem prawniczym. Odpowiedz na poniższe pytanie na podstawie podanego kontekstu prawnego.\n\nKontekst: {context}\n\nPytanie: {query}\n\nOdpowiedź:"
|
50 |
|
51 |
-
response =
|
52 |
-
async for token in client.text_generation(
|
53 |
model="Qwen/Qwen2.5-72B-Instruct",
|
54 |
prompt=prompt,
|
55 |
max_new_tokens=2048,
|
56 |
temperature=0.5,
|
57 |
-
top_p=0.7
|
58 |
-
|
59 |
-
):
|
60 |
-
response += token
|
61 |
-
yield token
|
62 |
-
|
63 |
-
def search_relevant_chunks(keywords, chunks, model, top_k=3):
|
64 |
-
keyword_embedding = model.encode(keywords, convert_to_tensor=True)
|
65 |
-
chunk_embeddings = model.encode([chunk['text'] for chunk in chunks], convert_to_tensor=True)
|
66 |
-
|
67 |
-
cos_scores = util.pytorch_cos_sim(keyword_embedding, chunk_embeddings)
|
68 |
-
top_results = torch.topk(cos_scores.mean(dim=0), k=top_k)
|
69 |
|
70 |
-
return
|
71 |
-
|
72 |
|
73 |
def main():
|
74 |
st.title("Chatbot Prawny z AI")
|
@@ -99,16 +95,13 @@ def main():
|
|
99 |
|
100 |
# Generate keywords and search for relevant chunks
|
101 |
with st.spinner("Analizuję pytanie i szukam odpowiednich informacji..."):
|
102 |
-
keywords =
|
103 |
relevant_chunks = search_relevant_chunks(keywords, chunks, model)
|
104 |
|
105 |
# Generate AI response
|
106 |
with st.chat_message("assistant"):
|
107 |
message_placeholder = st.empty()
|
108 |
-
full_response =
|
109 |
-
for chunk in asyncio.run(generate_ai_response(prompt, relevant_chunks)):
|
110 |
-
full_response += chunk
|
111 |
-
message_placeholder.markdown(full_response + "▌")
|
112 |
message_placeholder.markdown(full_response)
|
113 |
|
114 |
st.session_state.messages.append({"role": "assistant", "content": full_response})
|
|
|
4 |
from sentence_transformers import SentenceTransformer, util
|
5 |
import torch
|
6 |
from huggingface_hub import InferenceClient
|
|
|
7 |
|
8 |
# Load the Hugging Face token from environment variable
|
9 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
|
|
21 |
def load_model():
|
22 |
return SentenceTransformer('distiluse-base-multilingual-cased-v1')
|
23 |
|
24 |
+
def generate_keywords(query):
|
25 |
client = InferenceClient(token=HF_TOKEN)
|
26 |
|
27 |
prompt = f"Na podstawie poniższego pytania, wygeneruj 3-5 słów kluczowych, które najlepiej opisują główne tematy i koncepcje prawne zawarte w pytaniu. Podaj tylko słowa kluczowe, oddzielone przecinkami.\n\nPytanie: {query}\n\nSłowa kluczowe:"
|
28 |
|
29 |
+
response = client.text_generation(
|
30 |
model="Qwen/Qwen2.5-72B-Instruct",
|
31 |
prompt=prompt,
|
32 |
max_new_tokens=50,
|
|
|
37 |
keywords = [keyword.strip() for keyword in response.split(',')]
|
38 |
return keywords
|
39 |
|
40 |
+
def search_relevant_chunks(keywords, chunks, model, top_k=3):
|
41 |
+
keyword_embedding = model.encode(keywords, convert_to_tensor=True)
|
42 |
+
chunk_embeddings = model.encode([chunk['text'] for chunk in chunks], convert_to_tensor=True)
|
43 |
+
|
44 |
+
cos_scores = util.pytorch_cos_sim(keyword_embedding, chunk_embeddings)
|
45 |
+
top_results = torch.topk(cos_scores.mean(dim=0), k=top_k)
|
46 |
+
|
47 |
+
return [chunks[idx] for idx in top_results.indices]
|
48 |
+
|
49 |
+
def generate_ai_response(query, relevant_chunks):
|
50 |
client = InferenceClient(token=HF_TOKEN)
|
51 |
|
52 |
context = "Kontekst prawny:\n\n"
|
|
|
56 |
|
57 |
prompt = f"Jesteś asystentem prawniczym. Odpowiedz na poniższe pytanie na podstawie podanego kontekstu prawnego.\n\nKontekst: {context}\n\nPytanie: {query}\n\nOdpowiedź:"
|
58 |
|
59 |
+
response = client.text_generation(
|
|
|
60 |
model="Qwen/Qwen2.5-72B-Instruct",
|
61 |
prompt=prompt,
|
62 |
max_new_tokens=2048,
|
63 |
temperature=0.5,
|
64 |
+
top_p=0.7
|
65 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
+
return response
|
|
|
68 |
|
69 |
def main():
|
70 |
st.title("Chatbot Prawny z AI")
|
|
|
95 |
|
96 |
# Generate keywords and search for relevant chunks
|
97 |
with st.spinner("Analizuję pytanie i szukam odpowiednich informacji..."):
|
98 |
+
keywords = generate_keywords(prompt)
|
99 |
relevant_chunks = search_relevant_chunks(keywords, chunks, model)
|
100 |
|
101 |
# Generate AI response
|
102 |
with st.chat_message("assistant"):
|
103 |
message_placeholder = st.empty()
|
104 |
+
full_response = generate_ai_response(prompt, relevant_chunks)
|
|
|
|
|
|
|
105 |
message_placeholder.markdown(full_response)
|
106 |
|
107 |
st.session_state.messages.append({"role": "assistant", "content": full_response})
|