Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -31,32 +31,34 @@ class GeminiLLM(LLM):
|
|
31 |
return "google-gemini-llm"
|
32 |
|
33 |
def _make_request(self, api_key: str, prompt: str) -> requests.Response:
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
],
|
54 |
-
"generationConfig": {
|
55 |
-
"temperature": self.temperature
|
56 |
}
|
|
|
|
|
|
|
57 |
}
|
58 |
-
|
59 |
-
|
|
|
|
|
60 |
|
61 |
|
62 |
def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str:
|
@@ -238,59 +240,6 @@ def square_root(a: float) -> float:
|
|
238 |
return a ** 0.5
|
239 |
return sqrt(a)
|
240 |
|
241 |
-
@tool
|
242 |
-
def ask_youtube_video(url: str, objeto: str = "bird") -> str:
|
243 |
-
"""
|
244 |
-
Analyzes a YouTube video and estimates how many objects of the requested type appear in it.
|
245 |
-
Uses a YOLOv8 object detection model to count appearances in selected frames.
|
246 |
-
|
247 |
-
Args:
|
248 |
-
url (str): The YouTube video URL.
|
249 |
-
objeto (str): Object to search for (default is "bird").
|
250 |
-
|
251 |
-
Returns:
|
252 |
-
str: Approximate number of detected objects in the video or an error message.
|
253 |
-
"""
|
254 |
-
import tempfile
|
255 |
-
import cv2
|
256 |
-
from ultralytics import YOLO
|
257 |
-
from pytube import YouTube
|
258 |
-
|
259 |
-
try:
|
260 |
-
# Download video temporarily
|
261 |
-
yt = YouTube(url)
|
262 |
-
video_path = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False).name
|
263 |
-
yt.streams.filter(file_extension="mp4", progressive=True).first().download(filename=video_path)
|
264 |
-
|
265 |
-
# Load pre-trained YOLO model (lightweight for faster analysis)
|
266 |
-
model = YOLO("yolov8s.pt")
|
267 |
-
|
268 |
-
# Process video
|
269 |
-
cap = cv2.VideoCapture(video_path)
|
270 |
-
frame_count, total_detected = 0, 0
|
271 |
-
|
272 |
-
while True:
|
273 |
-
ret, frame = cap.read()
|
274 |
-
if not ret:
|
275 |
-
break
|
276 |
-
frame_count += 1
|
277 |
-
|
278 |
-
# Analyze 1 out of every 30 frames
|
279 |
-
if frame_count % 30 == 0:
|
280 |
-
results = model(frame, verbose=False)
|
281 |
-
for r in results:
|
282 |
-
for c in r.boxes.cls:
|
283 |
-
label = model.names[int(c)]
|
284 |
-
if objeto.lower() in label.lower():
|
285 |
-
total_detected += 1
|
286 |
-
|
287 |
-
cap.release()
|
288 |
-
return f"Approximately {total_detected} {objeto}(s) detected in the video."
|
289 |
-
|
290 |
-
except Exception as e:
|
291 |
-
return f"Error analyzing video: {str(e)}"
|
292 |
-
|
293 |
-
|
294 |
# --- Basic Agent Definition ---
|
295 |
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
296 |
from langchain_core.prompts import PromptTemplate
|
|
|
31 |
return "google-gemini-llm"
|
32 |
|
33 |
def _make_request(self, api_key: str, prompt: str) -> requests.Response:
|
34 |
+
url = f"https://generativelanguage.googleapis.com/v1beta/models/{self.model_name}:generateContent"
|
35 |
+
headers = {
|
36 |
+
"Content-Type": "application/json",
|
37 |
+
"X-goog-api-key": api_key
|
38 |
+
}
|
39 |
+
|
40 |
+
full_prompt = (
|
41 |
+
"You are an agent. Please respond concisely only with the answer, "
|
42 |
+
"no extra explanations.\n\n"
|
43 |
+
f"Question: {prompt}"
|
44 |
+
)
|
45 |
+
|
46 |
+
data = {
|
47 |
+
"contents": [
|
48 |
+
{
|
49 |
+
"role": "user",
|
50 |
+
"parts": [
|
51 |
+
{"text": full_prompt}
|
52 |
+
]
|
|
|
|
|
|
|
53 |
}
|
54 |
+
],
|
55 |
+
"generationConfig": {
|
56 |
+
"temperature": self.temperature
|
57 |
}
|
58 |
+
}
|
59 |
+
|
60 |
+
return requests.post(url, headers=headers, json=data)
|
61 |
+
|
62 |
|
63 |
|
64 |
def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str:
|
|
|
240 |
return a ** 0.5
|
241 |
return sqrt(a)
|
242 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
243 |
# --- Basic Agent Definition ---
|
244 |
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
245 |
from langchain_core.prompts import PromptTemplate
|