Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,7 +4,7 @@ import os
|
|
4 |
import dataclasses
|
5 |
|
6 |
from langchain_core.language_models import LLM
|
7 |
-
from typing import Optional, List
|
8 |
import requests
|
9 |
from typing import Dict
|
10 |
import cv2
|
@@ -18,6 +18,18 @@ import re
|
|
18 |
import json
|
19 |
import hashlib
|
20 |
from typing import Callable
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
class GeminiLLM(LLM):
|
23 |
"""Wrapper para usar Google Gemini como un LLM de LangChain."""
|
@@ -87,390 +99,66 @@ class GeminiLLM(LLM):
|
|
87 |
return f"Error {response.status_code}: {response.text}"
|
88 |
|
89 |
|
90 |
-
from langchain_core.prompts import PromptTemplate
|
91 |
-
from langchain.chains import LLMChain
|
92 |
-
import os
|
93 |
|
94 |
-
gemini_llm = GeminiLLM()
|
95 |
|
96 |
-
import os
|
97 |
-
from math import sqrt
|
98 |
-
from typing import Dict, List
|
99 |
-
from langchain_community.tools.tavily_search import TavilySearchResults
|
100 |
-
from langchain_community.document_loaders import WikipediaLoader
|
101 |
-
from langchain_community.document_loaders import ArxivLoader
|
102 |
-
import gradio as gr
|
103 |
-
import requests
|
104 |
-
import inspect
|
105 |
-
import pandas as pd
|
106 |
-
from langchain_core.documents import Document
|
107 |
-
from smolagents import CodeAgent, tool, InferenceClientModel
|
108 |
|
|
|
109 |
# (Keep Constants as is)
|
110 |
# --- Constants ---
|
111 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
112 |
|
113 |
-
|
114 |
@dataclasses.dataclass
|
115 |
class WikiSourceDocument:
|
116 |
source: str
|
117 |
page: str
|
118 |
page_content: str
|
119 |
|
|
|
120 |
@tool
|
121 |
-
def wiki_search(query: str, load_max_docs: int=3) -> List[
|
122 |
-
"""
|
123 |
-
Args:
|
124 |
-
query: The search query.
|
125 |
-
load_max_docs: The maximum number of documents to load."""
|
126 |
search_docs = WikipediaLoader(query=query, load_max_docs=load_max_docs).load()
|
127 |
return search_docs
|
128 |
|
129 |
@tool
|
130 |
-
def
|
131 |
-
"""
|
132 |
-
Args:
|
133 |
-
file_id: The file ID to load."""
|
134 |
-
return requests.get(f"https://agents-course-unit4-scoring.hf.space/files/{file_id}").content
|
135 |
-
|
136 |
-
@tool
|
137 |
-
def web_search(query: str, max_results: int) -> Dict[str, str]:
|
138 |
-
"""Search Tavily for a query and return maximum 3 results.
|
139 |
-
Args:
|
140 |
-
query: The search query.
|
141 |
-
max_results: The maximum number of results to return."""
|
142 |
search_docs = TavilySearchResults(max_results=max_results).invoke(input=query)
|
143 |
return {"web_results": search_docs}
|
144 |
|
145 |
-
|
146 |
@tool
|
147 |
-
def arxiv_search(query: str, load_max_docs: int) -> Dict[str, str]:
|
148 |
-
"""
|
149 |
-
Args:
|
150 |
-
query: The search query.
|
151 |
-
load_max_docs: The maximum number of documents to load.
|
152 |
-
"""
|
153 |
search_docs = ArxivLoader(query=query, load_max_docs=load_max_docs).load()
|
154 |
formatted_search_docs = "\n\n---\n\n".join(
|
155 |
[
|
156 |
-
f'<Document Title="{doc.metadata["Title"]}" Published="{doc.metadata["Published"]}"
|
|
|
|
|
157 |
for doc in search_docs
|
158 |
]
|
159 |
)
|
160 |
return {"arxiv_results": formatted_search_docs}
|
161 |
|
162 |
-
|
163 |
-
@tool
|
164 |
-
def multiply(a: float, b: float) -> float:
|
165 |
-
"""
|
166 |
-
Multiply two numbers and return the result.
|
167 |
-
This function takes two floating-point numbers as arguments and
|
168 |
-
returns their product. It performs basic multiplication.
|
169 |
-
Args:
|
170 |
-
a: The first number to be multiplied.
|
171 |
-
b: The second number to be multiplied.
|
172 |
-
"""
|
173 |
-
return a * b
|
174 |
-
|
175 |
-
|
176 |
-
@tool
|
177 |
-
def add(a: float, b: float) -> float:
|
178 |
-
"""
|
179 |
-
Add two numbers and return the result.
|
180 |
-
This function takes two floating-point numbers as arguments and
|
181 |
-
returns their sum. It performs basic addition.
|
182 |
-
Args:
|
183 |
-
a: The first number to be added.
|
184 |
-
b: The second number to be added.
|
185 |
-
"""
|
186 |
-
return a + b
|
187 |
-
|
188 |
-
|
189 |
-
@tool
|
190 |
-
def subtract(a: float, b: float) -> float:
|
191 |
-
"""
|
192 |
-
Subtracts two numbers.
|
193 |
-
Args:
|
194 |
-
a (float): the first number
|
195 |
-
b (float): the second number
|
196 |
-
"""
|
197 |
-
return a - b
|
198 |
-
|
199 |
-
|
200 |
-
@tool
|
201 |
-
def divide(a: float, b: float) -> float:
|
202 |
-
"""
|
203 |
-
Divides two numbers.
|
204 |
-
Args:
|
205 |
-
a (float): the first float number
|
206 |
-
b (float): the second float number
|
207 |
-
"""
|
208 |
-
if b == 0:
|
209 |
-
raise ValueError("Cannot divided by zero.")
|
210 |
-
return a / b
|
211 |
-
|
212 |
-
|
213 |
-
@tool
|
214 |
-
def modulus(a: int, b: int) -> int:
|
215 |
-
"""
|
216 |
-
Get the modulus of two numbers.
|
217 |
-
Args:
|
218 |
-
a (int): the first number
|
219 |
-
b (int): the second number
|
220 |
-
"""
|
221 |
-
return a % b
|
222 |
-
|
223 |
-
|
224 |
-
@tool
|
225 |
-
def power(a: float, b: float) -> float:
|
226 |
-
"""
|
227 |
-
Get the power of two numbers.
|
228 |
-
Args:
|
229 |
-
a (float): the first number
|
230 |
-
b (float): the second number
|
231 |
-
"""
|
232 |
-
return a ** b
|
233 |
-
|
234 |
-
|
235 |
-
@tool
|
236 |
-
def square_root(a: float) -> float:
|
237 |
-
"""
|
238 |
-
Get the square root of a number.
|
239 |
-
Args:
|
240 |
-
a (float): the number to get the square root of
|
241 |
-
"""
|
242 |
-
if a >= 0:
|
243 |
-
return a ** 0.5
|
244 |
-
return sqrt(a)
|
245 |
-
|
246 |
-
|
247 |
-
@tool
|
248 |
-
def extract_numbers(text: str) -> List[float]:
|
249 |
-
"""
|
250 |
-
Extract all numeric values from a given text.
|
251 |
-
Args:
|
252 |
-
text (str): Input text that may contain numbers.
|
253 |
-
Returns:
|
254 |
-
List[float]: A list of numbers found in the text.
|
255 |
-
"""
|
256 |
-
import re
|
257 |
-
return [float(num) for num in re.findall(r'\d+(?:\.\d+)?', text)]
|
258 |
-
|
259 |
-
@tool
|
260 |
-
def extract_keywords(text: str, top_n: int = 5) -> List[str]:
|
261 |
-
"""
|
262 |
-
Extracts the most frequent keywords from a text (ignores very common words).
|
263 |
-
Args:
|
264 |
-
text (str): The input text.
|
265 |
-
top_n (int): Number of keywords to return.
|
266 |
-
Returns:
|
267 |
-
List[str]: List of top keywords.
|
268 |
-
"""
|
269 |
-
import re
|
270 |
-
from collections import Counter
|
271 |
-
stop_words = {"the", "a", "an", "and", "of", "in", "on", "for", "is", "at", "to", "by"}
|
272 |
-
words = re.findall(r'\b[a-zA-Z]+\b', text.lower())
|
273 |
-
filtered = [w for w in words if w not in stop_words]
|
274 |
-
return [word for word, _ in Counter(filtered).most_common(top_n)]
|
275 |
-
@tool
|
276 |
-
def extract_names(text: str) -> List[str]:
|
277 |
-
"""
|
278 |
-
Extracts words that start with a capital letter (possible names or surnames).
|
279 |
-
Args:
|
280 |
-
text (str): The input text.
|
281 |
-
Returns:
|
282 |
-
List[str]: List of unique candidate names.
|
283 |
-
"""
|
284 |
-
import re
|
285 |
-
names = re.findall(r'\b[A-Z][a-z]+\b', text)
|
286 |
-
return list(dict.fromkeys(names))
|
287 |
-
|
288 |
-
@tool
|
289 |
-
def find_non_commutative_pairs(table: Dict[str, Dict[str, str]]) -> List[tuple]:
|
290 |
-
"""
|
291 |
-
Finds pairs (a,b) where the operation * is not commutative.
|
292 |
-
Args:
|
293 |
-
table (dict): A nested dictionary representing the operation table.
|
294 |
-
Returns:
|
295 |
-
List[tuple]: List of pairs where a*b != b*a.
|
296 |
-
"""
|
297 |
-
non_commutative = []
|
298 |
-
elements = table.keys()
|
299 |
-
for a in elements:
|
300 |
-
for b in elements:
|
301 |
-
if table[a][b] != table[b][a]:
|
302 |
-
non_commutative.append((a, b))
|
303 |
-
return non_commutative
|
304 |
-
|
305 |
-
@tool
|
306 |
-
def extract_dates(text: str) -> List[str]:
|
307 |
-
"""
|
308 |
-
Extract dates from text and return them in ISO 8601 format (YYYY-MM-DD).
|
309 |
-
Args:
|
310 |
-
text (str): Input text.
|
311 |
-
Returns:
|
312 |
-
List[str]: List of dates as strings in ISO format.
|
313 |
-
"""
|
314 |
-
import dateparser
|
315 |
-
import re
|
316 |
-
|
317 |
-
# Find all potential date substrings (simple heuristic)
|
318 |
-
possible_dates = re.findall(r'\b(?:\d{1,2}[/-]\d{1,2}[/-]\d{2,4}|\w+ \d{1,2},? \d{4}|\d{4}-\d{2}-\d{2})\b', text)
|
319 |
-
dates = []
|
320 |
-
for d in possible_dates:
|
321 |
-
parsed = dateparser.parse(d)
|
322 |
-
if parsed:
|
323 |
-
dates.append(parsed.strftime('%Y-%m-%d'))
|
324 |
-
return dates
|
325 |
-
@tool
|
326 |
-
def normalize_text(text: str) -> str:
|
327 |
-
"""
|
328 |
-
Normalize text: lowercase and remove punctuation.
|
329 |
-
Args:
|
330 |
-
text (str): Input text.
|
331 |
-
Returns:
|
332 |
-
str: Normalized text.
|
333 |
-
"""
|
334 |
-
import string
|
335 |
-
return text.lower().translate(str.maketrans('', '', string.punctuation))
|
336 |
-
|
337 |
-
@tool
|
338 |
-
def is_palindrome(text: str) -> bool:
|
339 |
-
"""
|
340 |
-
Check if the given text is a palindrome (ignoring spaces and punctuation).
|
341 |
-
Args:
|
342 |
-
text (str): Input text.
|
343 |
-
Returns:
|
344 |
-
bool: True if palindrome, else False.
|
345 |
-
"""
|
346 |
-
import re
|
347 |
-
cleaned = re.sub(r'[\W_]+', '', text.lower())
|
348 |
-
return cleaned == cleaned[::-1]
|
349 |
-
|
350 |
-
@tool
|
351 |
-
def filter_by_numeric_range(items: list, key: str, start: float, end: float) -> list:
|
352 |
-
"""
|
353 |
-
Filter a list of dict-like objects by a numeric attribute in a given inclusive range.
|
354 |
-
|
355 |
-
Args:
|
356 |
-
items: List of dicts or objects with attribute `key`.
|
357 |
-
key: Attribute/key to filter on.
|
358 |
-
start: Start of range (inclusive).
|
359 |
-
end: End of range (inclusive).
|
360 |
-
Returns:
|
361 |
-
Filtered list of items.
|
362 |
-
"""
|
363 |
-
filtered = []
|
364 |
-
for item in items:
|
365 |
-
value = item.get(key) if isinstance(item, dict) else getattr(item, key, None)
|
366 |
-
if value is not None and start <= value <= end:
|
367 |
-
filtered.append(item)
|
368 |
-
return filtered
|
369 |
-
|
370 |
-
|
371 |
-
@tool
|
372 |
-
def classify_items_by_list(items: list, category_a: list, category_b: list) -> dict:
|
373 |
-
"""
|
374 |
-
Classify items into two categories based on membership.
|
375 |
-
|
376 |
-
Args:
|
377 |
-
items: List of items (strings).
|
378 |
-
category_a: List of items for category A.
|
379 |
-
category_b: List of items for category B.
|
380 |
-
Returns:
|
381 |
-
Dict with keys 'category_a' and 'category_b' listing matched items.
|
382 |
-
"""
|
383 |
-
set_a = set(map(str.lower, category_a))
|
384 |
-
set_b = set(map(str.lower, category_b))
|
385 |
-
classified = {'category_a': [], 'category_b': []}
|
386 |
-
for item in items:
|
387 |
-
lower_item = item.lower()
|
388 |
-
if lower_item in set_a:
|
389 |
-
classified['category_a'].append(item)
|
390 |
-
elif lower_item in set_b:
|
391 |
-
classified['category_b'].append(item)
|
392 |
-
return classified
|
393 |
-
|
394 |
-
from typing import Dict
|
395 |
-
|
396 |
-
@tool
|
397 |
-
def web_search(query: str, max_results: int = 3) -> Dict[str, str]:
|
398 |
-
"""
|
399 |
-
Perform a web search for a query and return up to max_results results as a dictionary.
|
400 |
-
|
401 |
-
Args:
|
402 |
-
query (str): The search query.
|
403 |
-
max_results (int): Maximum number of results to return. Default is 3.
|
404 |
-
|
405 |
-
Returns:
|
406 |
-
Dict[str, str]: Dictionary with search results under the key "web_results".
|
407 |
-
"""
|
408 |
-
search_docs = TavilySearchResults(max_results=max_results).invoke(input=query)
|
409 |
-
return {"web_results": search_docs}
|
410 |
-
|
411 |
-
|
412 |
-
from typing import List
|
413 |
-
|
414 |
-
@tool
|
415 |
-
def find_non_commutative_pairs(table: Dict[str, Dict[str, str]]) -> List[tuple]:
|
416 |
-
"""
|
417 |
-
Finds pairs (a,b) where the operation * is not commutative.
|
418 |
-
Args:
|
419 |
-
table (dict): Nested dict representing operation table, e.g. table[a][b].
|
420 |
-
Returns:
|
421 |
-
List of pairs (a,b) where a*b != b*a.
|
422 |
-
"""
|
423 |
-
non_commutative = []
|
424 |
-
elements = list(table.keys())
|
425 |
-
for a in elements:
|
426 |
-
for b in elements:
|
427 |
-
if table[a][b] != table[b][a]:
|
428 |
-
non_commutative.append((a, b))
|
429 |
-
return non_commutative
|
430 |
-
|
431 |
-
|
432 |
-
# --- Basic Agent Definition ---
|
433 |
-
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
434 |
-
|
435 |
-
|
436 |
-
# --- Helper para describir las tools ---
|
437 |
-
def describe_tool(func: Callable) -> str:
|
438 |
-
name = func.__name__
|
439 |
-
sig = str(inspect.signature(func))
|
440 |
-
doc = func.__doc__.strip().split('\n')[0] if func.__doc__ else "No description"
|
441 |
-
return f"- {name}{sig}: {doc}"
|
442 |
-
|
443 |
class BasicAgent:
|
444 |
-
def __init__(self, llm=None, max_iterations=
|
445 |
self.llm = llm or GeminiLLM()
|
|
|
446 |
self.tools = {
|
447 |
"wiki_search": wiki_search,
|
448 |
-
"load_file": load_file,
|
449 |
"web_search": web_search,
|
450 |
"arxiv_search": arxiv_search,
|
451 |
-
"multiply": multiply,
|
452 |
-
"add": add,
|
453 |
-
"subtract": subtract,
|
454 |
-
"divide": divide,
|
455 |
-
"modulus": modulus,
|
456 |
-
"power": power,
|
457 |
-
"square_root": square_root,
|
458 |
-
"extract_numbers": extract_numbers,
|
459 |
"extract_keywords": extract_keywords,
|
460 |
-
"extract_names": extract_names,
|
461 |
-
"find_non_commutative_pairs": find_non_commutative_pairs,
|
462 |
"extract_dates": extract_dates,
|
|
|
463 |
"normalize_text": normalize_text,
|
464 |
-
"is_palindrome": is_palindrome,
|
465 |
-
"filter_by_numeric_range": filter_by_numeric_range,
|
466 |
-
"classify_items_by_list": classify_items_by_list,
|
467 |
}
|
468 |
-
# Cache para llamadas a tools
|
469 |
self._cache = {}
|
470 |
self.max_iterations = max_iterations
|
471 |
|
472 |
-
#
|
473 |
-
tools_desc = "\n".join(
|
474 |
prompt_str = (
|
475 |
"You can use the following tools by calling them with syntax:\n"
|
476 |
"tool:<tool_name>(arg1,arg2,...)\n\n"
|
@@ -481,10 +169,6 @@ class BasicAgent:
|
|
481 |
self.prompt_template = PromptTemplate.from_template(prompt_str)
|
482 |
self.chain = LLMChain(prompt=self.prompt_template, llm=self.llm)
|
483 |
|
484 |
-
def register_tool(self, name: str, func: Callable):
|
485 |
-
self.tools[name] = func
|
486 |
-
print(f"[LOG] Registered new tool: {name}")
|
487 |
-
|
488 |
def _cache_key(self, tool_name, args, kwargs):
|
489 |
key_data = {"tool": tool_name, "args": args, "kwargs": kwargs}
|
490 |
key_json = json.dumps(key_data, sort_keys=True, default=str)
|
@@ -492,33 +176,24 @@ class BasicAgent:
|
|
492 |
|
493 |
def call_tool(self, tool_name: str, *args, **kwargs):
|
494 |
func = self.tools.get(tool_name)
|
495 |
-
if func
|
496 |
-
|
497 |
-
|
498 |
-
return msg
|
499 |
-
|
500 |
key = self._cache_key(tool_name, args, kwargs)
|
501 |
if key in self._cache:
|
502 |
-
print(f"[LOG] Returning cached result for tool '{tool_name}' with args={args} kwargs={kwargs}")
|
503 |
return self._cache[key]
|
504 |
-
|
505 |
-
func_name = getattr(func, "__name__", str(type(func)))
|
506 |
-
print(f"[LOG] Calling tool: '{func_name}' with args={args} kwargs={kwargs}")
|
507 |
try:
|
508 |
result = func(*args, **kwargs)
|
509 |
-
print(f"[LOG] Tool '{func_name}' returned: {result}")
|
510 |
self._cache[key] = result
|
511 |
return result
|
512 |
except Exception as e:
|
513 |
-
|
514 |
-
return f"Error executing tool '{func_name}': {e}"
|
515 |
|
516 |
def _parse_arg(self, arg: str):
|
517 |
arg = arg.strip()
|
518 |
-
if arg.lower()
|
519 |
-
return
|
520 |
-
if arg.lower() == "false":
|
521 |
-
return False
|
522 |
try:
|
523 |
return int(arg)
|
524 |
except:
|
@@ -529,7 +204,6 @@ class BasicAgent:
|
|
529 |
pass
|
530 |
if (arg.startswith('"') and arg.endswith('"')) or (arg.startswith("'") and arg.endswith("'")):
|
531 |
return arg[1:-1]
|
532 |
-
# Intentar JSON para listas o dicts
|
533 |
try:
|
534 |
return json.loads(arg)
|
535 |
except:
|
@@ -537,7 +211,6 @@ class BasicAgent:
|
|
537 |
return arg
|
538 |
|
539 |
def _run_once(self, text: str) -> (str, bool):
|
540 |
-
# Ejecuta una iteración: LLM + ejecución tools
|
541 |
llm_out = self.chain.run({"question": text})
|
542 |
pattern = r"tool:(\w+)\((.*?)\)"
|
543 |
tools_called = False
|
@@ -556,13 +229,18 @@ class BasicAgent:
|
|
556 |
|
557 |
def __call__(self, question: str) -> str:
|
558 |
text = question
|
559 |
-
for
|
560 |
text, used_tools = self._run_once(text)
|
561 |
if not used_tools:
|
562 |
break
|
563 |
return text
|
564 |
|
565 |
|
|
|
|
|
|
|
|
|
|
|
566 |
# --- Build Gradio Interface using Blocks ---
|
567 |
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
568 |
"""
|
|
|
4 |
import dataclasses
|
5 |
|
6 |
from langchain_core.language_models import LLM
|
7 |
+
from typing import Optional, List. Dict
|
8 |
import requests
|
9 |
from typing import Dict
|
10 |
import cv2
|
|
|
18 |
import json
|
19 |
import hashlib
|
20 |
from typing import Callable
|
21 |
+
from math import sqrt
|
22 |
+
from langchain_community.tools.tavily_search import TavilySearchResults
|
23 |
+
from langchain_community.document_loaders import WikipediaLoader
|
24 |
+
from langchain_community.document_loaders import ArxivLoader
|
25 |
+
import gradio as gr
|
26 |
+
import requests
|
27 |
+
import inspect
|
28 |
+
import pandas as pd
|
29 |
+
from langchain_core.documents import Document
|
30 |
+
from smolagents import CodeAgent, tool, InferenceClientModel
|
31 |
+
import dateparser
|
32 |
+
from collections import Counter
|
33 |
|
34 |
class GeminiLLM(LLM):
|
35 |
"""Wrapper para usar Google Gemini como un LLM de LangChain."""
|
|
|
99 |
return f"Error {response.status_code}: {response.text}"
|
100 |
|
101 |
|
|
|
|
|
|
|
102 |
|
|
|
103 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
|
105 |
+
gemini_llm = GeminiLLM()
|
106 |
# (Keep Constants as is)
|
107 |
# --- Constants ---
|
108 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
109 |
|
|
|
110 |
@dataclasses.dataclass
|
111 |
class WikiSourceDocument:
|
112 |
source: str
|
113 |
page: str
|
114 |
page_content: str
|
115 |
|
116 |
+
# --- Herramientas de búsqueda ---
|
117 |
@tool
|
118 |
+
def wiki_search(query: str, load_max_docs: int = 3) -> List[WikiSourceDocument]:
|
119 |
+
"""Busca en Wikipedia y devuelve hasta load_max_docs resultados."""
|
|
|
|
|
|
|
120 |
search_docs = WikipediaLoader(query=query, load_max_docs=load_max_docs).load()
|
121 |
return search_docs
|
122 |
|
123 |
@tool
|
124 |
+
def web_search(query: str, max_results: int = 3) -> Dict[str, str]:
|
125 |
+
"""Busca en la web y devuelve hasta max_results resultados."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
search_docs = TavilySearchResults(max_results=max_results).invoke(input=query)
|
127 |
return {"web_results": search_docs}
|
128 |
|
|
|
129 |
@tool
|
130 |
+
def arxiv_search(query: str, load_max_docs: int = 3) -> Dict[str, str]:
|
131 |
+
"""Busca en Arxiv y devuelve hasta load_max_docs resultados formateados."""
|
|
|
|
|
|
|
|
|
132 |
search_docs = ArxivLoader(query=query, load_max_docs=load_max_docs).load()
|
133 |
formatted_search_docs = "\n\n---\n\n".join(
|
134 |
[
|
135 |
+
f'<Document Title="{doc.metadata["Title"]}" Published="{doc.metadata["Published"]}" '
|
136 |
+
f'Authors="{doc.metadata["Authors"]}" Summary="{doc.metadata["Summary"]}"/>\n'
|
137 |
+
f'{doc.page_content}\n</Document>'
|
138 |
for doc in search_docs
|
139 |
]
|
140 |
)
|
141 |
return {"arxiv_results": formatted_search_docs}
|
142 |
|
143 |
+
# --- Agente básico optimizado para preguntas ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
class BasicAgent:
|
145 |
+
def __init__(self, llm=None, max_iterations=3):
|
146 |
self.llm = llm or GeminiLLM()
|
147 |
+
# Sólo herramientas de búsqueda y extracción textual clave
|
148 |
self.tools = {
|
149 |
"wiki_search": wiki_search,
|
|
|
150 |
"web_search": web_search,
|
151 |
"arxiv_search": arxiv_search,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
"extract_keywords": extract_keywords,
|
|
|
|
|
153 |
"extract_dates": extract_dates,
|
154 |
+
"extract_names": extract_names,
|
155 |
"normalize_text": normalize_text,
|
|
|
|
|
|
|
156 |
}
|
|
|
157 |
self._cache = {}
|
158 |
self.max_iterations = max_iterations
|
159 |
|
160 |
+
# Descripción simplificada de herramientas para el prompt
|
161 |
+
tools_desc = "\n".join(f"- {name}: {func.__doc__.strip().splitlines()[0]}" for name, func in self.tools.items())
|
162 |
prompt_str = (
|
163 |
"You can use the following tools by calling them with syntax:\n"
|
164 |
"tool:<tool_name>(arg1,arg2,...)\n\n"
|
|
|
169 |
self.prompt_template = PromptTemplate.from_template(prompt_str)
|
170 |
self.chain = LLMChain(prompt=self.prompt_template, llm=self.llm)
|
171 |
|
|
|
|
|
|
|
|
|
172 |
def _cache_key(self, tool_name, args, kwargs):
|
173 |
key_data = {"tool": tool_name, "args": args, "kwargs": kwargs}
|
174 |
key_json = json.dumps(key_data, sort_keys=True, default=str)
|
|
|
176 |
|
177 |
def call_tool(self, tool_name: str, *args, **kwargs):
|
178 |
func = self.tools.get(tool_name)
|
179 |
+
if not func:
|
180 |
+
return f"Tool '{tool_name}' not found."
|
181 |
+
|
|
|
|
|
182 |
key = self._cache_key(tool_name, args, kwargs)
|
183 |
if key in self._cache:
|
|
|
184 |
return self._cache[key]
|
185 |
+
|
|
|
|
|
186 |
try:
|
187 |
result = func(*args, **kwargs)
|
|
|
188 |
self._cache[key] = result
|
189 |
return result
|
190 |
except Exception as e:
|
191 |
+
return f"Error executing tool '{tool_name}': {e}"
|
|
|
192 |
|
193 |
def _parse_arg(self, arg: str):
|
194 |
arg = arg.strip()
|
195 |
+
if arg.lower() in ("true", "false"):
|
196 |
+
return arg.lower() == "true"
|
|
|
|
|
197 |
try:
|
198 |
return int(arg)
|
199 |
except:
|
|
|
204 |
pass
|
205 |
if (arg.startswith('"') and arg.endswith('"')) or (arg.startswith("'") and arg.endswith("'")):
|
206 |
return arg[1:-1]
|
|
|
207 |
try:
|
208 |
return json.loads(arg)
|
209 |
except:
|
|
|
211 |
return arg
|
212 |
|
213 |
def _run_once(self, text: str) -> (str, bool):
|
|
|
214 |
llm_out = self.chain.run({"question": text})
|
215 |
pattern = r"tool:(\w+)\((.*?)\)"
|
216 |
tools_called = False
|
|
|
229 |
|
230 |
def __call__(self, question: str) -> str:
|
231 |
text = question
|
232 |
+
for _ in range(self.max_iterations):
|
233 |
text, used_tools = self._run_once(text)
|
234 |
if not used_tools:
|
235 |
break
|
236 |
return text
|
237 |
|
238 |
|
239 |
+
|
240 |
+
|
241 |
+
|
242 |
+
|
243 |
+
|
244 |
# --- Build Gradio Interface using Blocks ---
|
245 |
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
246 |
"""
|