import os from huggingface_hub import login from sentence_transformers import SentenceTransformer hf_token = os.getenv('HF_TOKEN') if hf_token: login(token=hf_token) cache_dir = '/app/hf_cache' model_name = 'sentence-transformers/all-MiniLM-L6-v2' expected_cache_path = os.path.join(cache_dir, 'sentence-transformers', model_name.replace('/', '--')) if not os.path.exists(expected_cache_path): print(f'Downloading embedding model: {model_name}...') embedding_model = SentenceTransformer(model_name, cache_folder=cache_dir) else: print(f'Embedding model ({model_name}) already cached. Skipping download.') print('Embedding model download check complete.')