File size: 11,491 Bytes
e61ab70 6cde267 e61ab70 6cde267 e61ab70 6cde267 e61ab70 2f7b19f e61ab70 2ba0e37 e61ab70 854aec5 e61ab70 bf59962 6cde267 6f8eac3 2ba0e37 e61ab70 2ba0e37 e61ab70 27dd6a6 2ba0e37 e61ab70 2ba0e37 e61ab70 6cde267 e61ab70 2ba0e37 e61ab70 2ba0e37 e61ab70 2ba0e37 e61ab70 2ba0e37 6f8eac3 2ba0e37 6f8eac3 2ba0e37 053011f 2ba0e37 e61ab70 2ba0e37 e61ab70 2ba0e37 e61ab70 2ba0e37 e61ab70 2ba0e37 e61ab70 2ba0e37 e61ab70 2ba0e37 e61ab70 2ba0e37 e61ab70 2ba0e37 e61ab70 2ba0e37 e61ab70 2ba0e37 e61ab70 2ba0e37 e61ab70 2ba0e37 e61ab70 2ba0e37 e61ab70 2ba0e37 e61ab70 2ba0e37 e61ab70 2ba0e37 e61ab70 2ba0e37 e61ab70 2ba0e37 e61ab70 2ba0e37 e61ab70 2ba0e37 e61ab70 2ba0e37 e61ab70 2ba0e37 addc6d4 e61ab70 2ba0e37 e61ab70 2ba0e37 e61ab70 2ba0e37 e61ab70 2ba0e37 e61ab70 2ba0e37 e61ab70 2ba0e37 e61ab70 2ba0e37 bf59962 f9fa2e0 bf59962 e61ab70 bf59962 5723a6c bf59962 f9fa2e0 bf59962 e61ab70 2ba0e37 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 |
import os
import re
import asyncio
import gradio as gr
from datetime import datetime
import langdetect
import RAG_Domain_know_doc
from web_search import search_autism
from RAG import rag_autism
from openai import OpenAI
from dotenv import load_dotenv
import Old_Document
import User_Specific_Documents
from prompt_template import (
Prompt_template_translation,
Prompt_template_LLM_Generation,
Prompt_template_Reranker,
Prompt_template_Wisal,
Prompt_template_Halluciations,
Prompt_template_paraphrasing,
Prompt_template_Translate_to_original,
Prompt_template_relevance,
Prompt_template_User_document_prompt
)
# Initialize OpenAI client
env = os.getenv("ENVIRONMENT", "production")
openai = OpenAI(
api_key=DEEPINFRA_API_KEY,
base_url="https://api.deepinfra.com/v1/openai",
)
SESSION_ID = "default"
# pending_clarifications = {}
def call_llm(model: str, messages: list[dict], temperature: float = 0.0, **kwargs) -> str:
resp = openai.chat.completions.create(
model=model,
messages=messages,
temperature=temperature,
**kwargs
)
return resp.choices[0].message.content.strip()
def is_greeting(text: str) -> bool:
return bool(re.search(r"\b(hi|hello|hey|good (morning|afternoon|evening))\b", text, re.I))
def process_query(query: str, first_turn: bool = False, session_id: str = "default"):
intro = ""
process_log = []
# if session_id in pending_clarifications:
# if query.strip().lower() == "yes":
# corrected_query = pending_clarifications.pop(session_id)
# process_log.append(f"User confirmed: {corrected_query}")
# return process_autism_pipeline(corrected_query, process_log, intro)
# else:
# pending_clarifications.pop(session_id)
# redirect = "Hello I’m Wisal, an AI assistant developed by Compumacy AI, and a knowledgeable Autism specialist.\nIf you have any question related to autism please submit a question specifically about autism."
# process_log.append("User rejected clarification.")
# _save_process_log(process_log)
# return redirect
if first_turn and (not query or query.strip() == ""):
intro = "Hello! I’m Wisal, an AI assistant developed by Compumacy AI, specializing in Autism Spectrum Disorders. How can I help you today?"
process_log.append(intro)
_save_process_log(process_log)
return intro
if is_greeting(query):
greeting = intro + "Hello! I’m Wisal, your AI assistant developed by Compumacy AI. How can I help you today?"
process_log.append(f"Greeting detected.\n{greeting}")
_save_process_log(process_log)
return greeting
corrected_query = call_llm(
model="Qwen/Qwen3-32B",
messages=[{"role": "user", "content": Prompt_template_translation.format(query=query)}],
reasoning_effort="none"
)
process_log.append(f"Corrected Query: {corrected_query}")
relevance = call_llm(
model="Qwen/Qwen3-32B",
messages=[{"role": "user", "content": Prompt_template_relevance.format(corrected_query=corrected_query)}],
reasoning_effort="none"
)
process_log.append(f"Relevance Check: {relevance}")
# redirect_message = "Hello I’m Wisal, an AI assistant developed by Compumacy AI, and a knowledgeable Autism specialist.\nIf you have any question related to autism please submit a question specifically about autism."
# if relevance.startswith("Hello I’m Wisal"):
# clarification = f"Your query was not clearly related to autism. Do you mean:\n\"{corrected_query}\"\nIf yes, please confirm so I can help. If not:\n{redirect_message}"
# pending_clarifications[session_id] = corrected_query
# process_log.append(f"Clarification Prompted: {clarification}")
# _save_process_log(process_log)
# return clarification
if relevance != "RELATED":
process_log.append("Query not autism-related.")
_save_process_log(process_log)
return
return process_autism_pipeline(corrected_query, process_log, intro)
def process_autism_pipeline(corrected_query, process_log, intro):
web_search_resp = asyncio.run(search_autism(corrected_query))
web_answer = web_search_resp.get("answer", "")
process_log.append(f"Web Search: {web_answer}")
gen_prompt = Prompt_template_LLM_Generation.format(new_query=corrected_query)
generated = call_llm(
model="Qwen/Qwen3-32B",
messages=[{"role": "user", "content": gen_prompt}],
reasoning_effort="none"
)
process_log.append(f"LLM Generated: {generated}")
rag_resp = asyncio.run(rag_autism(corrected_query, top_k=3))
rag_contexts = rag_resp.get("answer", [])
process_log.append(f"RAG Contexts: {rag_contexts}")
answers_list = f"[1] {generated}\n[2] {web_answer}\n" + "\n".join(f"[{i+3}] {c}" for i, c in enumerate(rag_contexts))
rerank_prompt = Prompt_template_Reranker.format(new_query=corrected_query, answers_list=answers_list)
reranked = call_llm(
model="Qwen/Qwen3-32B",
messages=[{"role": "user", "content": rerank_prompt}],
reasoning_effort="none"
)
process_log.append(f"Reranked: {reranked}")
wisal_prompt = Prompt_template_Wisal.format(new_query=corrected_query, document=reranked)
wisal = call_llm(
model="Qwen/Qwen3-32B",
messages=[{"role": "user", "content": wisal_prompt}],
reasoning_effort="none"
)
process_log.append(f"Wisal Answer: {wisal}")
halluc_prompt = Prompt_template_Halluciations.format(
new_query=corrected_query,
answer=wisal,
document=generated
)
halluc = call_llm(
model="Qwen/Qwen3-32B",
messages=[{"role": "user", "content": halluc_prompt}],
reasoning_effort="none"
)
process_log.append(f"Hallucination Score: {halluc}")
score = int(halluc.split("Score: ")[-1]) if "Score: " in halluc else 3
if score in (2, 3):
paraphrased = call_llm(
model="Qwen/Qwen3-32B",
messages=[{"role": "user", "content": Prompt_template_paraphrasing.format(document=generated)}],
reasoning_effort="none"
)
wisal = call_llm(
model="Qwen/Qwen3-32B",
messages=[{"role": "user", "content": Prompt_template_Wisal.format(new_query=corrected_query, document=paraphrased)}],
reasoning_effort="none"
)
process_log.append(f"Paraphrased Wisal: {wisal}")
try:
detected_lang = langdetect.detect(corrected_query)
except:
detected_lang = "en"
if detected_lang != "en":
result = call_llm(
model="Qwen/Qwen3-32B",
messages=[{"role": "user", "content": Prompt_template_Translate_to_original.format(query=corrected_query, document=wisal)}],
reasoning_effort="none"
)
process_log.append(f"Translated Back: {result}")
else:
result = wisal
process_log.append(f"Final Result: {result}")
_save_process_log(process_log)
return intro + result
def _save_process_log(log_lines, filename="process_output.txt"):
import datetime
logs_dir = os.path.join(os.path.dirname(__file__), "logs")
os.makedirs(logs_dir, exist_ok=True)
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S_%f")
log_filename = os.path.join(logs_dir, f"log_{timestamp}.txt")
with open(log_filename, "w", encoding="utf-8") as f:
for line in log_lines:
f.write(str(line) + "\n\n")
def _save_process_log(log_lines, filename="process_output.txt"):
import datetime
import os
# Ensure logs directory exists
logs_dir = os.path.join(os.path.dirname(__file__), "logs")
os.makedirs(logs_dir, exist_ok=True)
# Unique filename per question (timestamped)
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S_%f")
log_filename = os.path.join(logs_dir, f"log_{timestamp}.txt")
try:
with open(log_filename, "w", encoding="utf-8") as f:
for line in log_lines:
f.write(str(line) + "\n\n")
except Exception as e:
pass
# Gradio UI for main pipeline, RAG_Domain_know_doc, and User_Specific_Documents , Old_Document
def main_pipeline_interface(query):
return process_query(query, first_turn=True)
def main_pipeline_with_doc_and_history(query, doc_file, doc_type, history):
response = main_pipeline_with_doc(query, doc_file, doc_type)
updated_history = history + f"\nUser: {query}\nWisal: {response}\n"
return response, updated_history
def main_pipeline_with_doc(query, doc_file, doc_type):
# If no document, use main pipeline
if doc_file is None or doc_type == "None":
return process_query(query, first_turn=True)
safe_filename = os.path.basename(getattr(doc_file, 'name', str(doc_file)))
upload_dir = os.path.join(os.path.dirname(__file__), "uploaded_docs")
os.makedirs(upload_dir, exist_ok=True)
save_path = os.path.join(upload_dir, safe_filename)
# 💡 Check if doc_file is file-like (has `.read()`) or path-like (str or NamedString)
if hasattr(doc_file, 'read'):
# File-like object
file_bytes = doc_file.read()
else:
# It's a path (NamedString), read from file path
with open(str(doc_file), 'rb') as f:
file_bytes = f.read()
# Save the file content
with open(save_path, "wb") as f:
f.write(file_bytes)
# Route to correct document handler
if doc_type == "Knowledge Document":
status = RAG_Domain_know_doc.ingest_file(save_path)
answer = RAG_Domain_know_doc.answer_question(query)
return f"[Knowledge Document Uploaded]\n{status}\n\n{answer}"
elif doc_type == "User-Specific Document":
status = User_Specific_Documents.ingest_file(save_path)
answer = User_Specific_Documents.answer_question(query)
return f"[User-Specific Document Uploaded]\n{status}\n\n{answer}"
elif doc_type == "Old Document":
status = Old_Document.ingest_file(save_path)
answer = Old_Document.answer_question(query)
return f"[Old Document Uploaded]\n{status}\n\n{answer}"
else:
return "Invalid document type."
def pipeline_with_history(message, doc_file, doc_type, history):
if not message.strip():
return history, ""
response = main_pipeline_with_doc(message, doc_file, doc_type)
history = history + [[message, response]]
return history, ""
with gr.Blocks(title="Wisal Chatbot", theme=gr.themes.Base()) as demo:
gr.Markdown("# 🤖 Wisal: Autism AI Assistant")
chatbot = gr.Chatbot(label="Wisal Chat", height=500)
with gr.Row():
user_input = gr.Textbox(placeholder="Type your question here...", label="", lines=1)
send_btn = gr.Button("Send")
doc_file = gr.File(label="📎 Upload Document (PDF, DOCX, TXT)", file_types=[".pdf", ".docx", ".txt"])
doc_type = gr.Radio(
["None", "Knowledge Document", "User-Specific Document", "Old Document"],
value="None",
label="Document Type"
)
send_btn.click(
fn=pipeline_with_history,
inputs=[user_input, doc_file, doc_type, chatbot],
outputs=[chatbot, user_input]
)
clear_btn = gr.Button("Clear Chat")
clear_btn.click(lambda: [], outputs=[chatbot])
if __name__ == "__main__":
demo.launch(debug=True) |