File size: 1,601 Bytes
ffe126a
 
 
 
 
 
 
 
 
 
 
d9c3f2e
ffe126a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import os
import asyncio
import httpx
from tavily import TavilyClient
from mcp.server.fastmcp import FastMCP
import nest_asyncio
from dotenv import load_dotenv

# Apply nested asyncio patch
nest_asyncio.apply()




# Initialize Tavily client and FastMCP
tavily_client = TavilyClient(api_key=TAVILY_API_KEY)
mcp = FastMCP("tavily_search")

# Define the search tool
@mcp.tool()
async def search_autism(query: str) -> dict:
    """Performs a Tavily web search for information about autism."""
    try:
        # Execute a search query
        response = tavily_client.search(
            query=query,
            max_results=5,
            search_depth="advanced",
            topic="general",
            name="live_search",
            description="""Using the latest information from reputable online sources, provide a concise AI-generated overview of the query related to autism spectrum  """,
            include_answer=True
        )
        return {
            "results": response.get("results", []),
            "answer": response.get("answer", "")
        }
    except Exception as e:
        return {"error": f"Search failed: {str(e)}"}

# Main entry point
# async def main():
#     query = "autism symptoms and treatments"  # Replace with dynamic input if needed
#     result = await search_autism(query)
#     print("Search Results:")
#     for res in result.get("results", []):
#         print(f"- {res.get('title')} ({res.get('url')})")
#     print("\nAnswer:")
#     print(result.get("answer", "No answer provided."))

# Run the script
if __name__ == "__main__":
    asyncio.run(main())