File size: 3,296 Bytes
e4749b5
f66d8b7
e4749b5
 
 
7d34100
 
 
 
 
 
f66d8b7
e4749b5
 
 
a0ea7f5
e4749b5
f66d8b7
e4749b5
 
f66d8b7
e4749b5
 
f66d8b7
e4749b5
f66d8b7
e4749b5
 
 
 
f66d8b7
e4749b5
 
f66d8b7
e4749b5
 
 
 
 
 
 
 
 
 
 
 
 
 
f66d8b7
 
e4749b5
 
7d34100
0ff39df
 
 
 
 
 
 
 
 
 
21cf782
7d34100
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ff39df
 
 
 
e4749b5
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import base64
import tempfile
from openai import OpenAI
from langchain.tools import tool
from constants import OPENAI_KEY
import tempfile
import os
import openai
from openai import OpenAI
from langchain.tools import tool
import yt_dlp

# Initialize OpenAI client (uses OPENAI_API_KEY from environment or explicitly)
client = OpenAI(api_key=OPENAI_KEY)
 
@tool
def audio_to_text(base64_audio_path: str) -> str:
    """
    Transcribes an audio file (base64-encoded text stored in a file) using OpenAI's Whisper API.

    Args:
        base64_audio_path (str): Path to a file containing base64-encoded audio as text.

    Returns:
        str: The transcribed text.
    """
    try:
        # Read base64 string
        with open(base64_audio_path, "r") as f:
            base64_str = f.read()

        # Decode base64 to bytes
        audio_bytes = base64.b64decode(base64_str)

        # Save audio bytes to temp file (must be supported format: mp3, m4a, wav, etc.)
        with tempfile.NamedTemporaryFile(suffix=".mp3", delete=False) as temp_audio:
            temp_audio.write(audio_bytes)
            temp_audio_path = temp_audio.name

        # Transcribe using OpenAI Whisper API
        with open(temp_audio_path, "rb") as audio_file:
            transcript = client.audio.transcriptions.create(
                model="whisper-1",
                file=audio_file,
                response_format="text"
            )

        return transcript.strip()

    except Exception as e:
        return f"An error occurred during transcription: {str(e)}"

@tool
def audio_to_text_from_youtube(youtube_url: str) -> str:
    """
    Downloads audio from a YouTube video and transcribes it using OpenAI Whisper API.

    Args:
        youtube_url (str): URL of the YouTube video.

    Returns:
        str: Transcribed text.
    """
    try:
        with tempfile.TemporaryDirectory() as tmpdir:
            audio_output_path = os.path.join(tmpdir, "audio.mp3")

            # Download best audio using yt-dlp
            ydl_opts = {
                "format": "bestaudio/best",
                "outtmpl": audio_output_path,
                "quiet": True,
                "postprocessors": [{
                    "key": "FFmpegExtractAudio",
                    "preferredcodec": "mp3",
                    "preferredquality": "192",
                }],
            }

            with yt_dlp.YoutubeDL(ydl_opts) as ydl:
                ydl.download([youtube_url])

            # Transcribe with OpenAI Whisper
            with open(audio_output_path, "rb") as audio_file:
                transcript = client.audio.transcriptions.create(
                    model="whisper-1",
                    file=audio_file,
                    response_format="text"
                )

            return transcript.strip()

    except Exception as e:
        return f"An error occurred during YouTube transcription: {str(e)}"

if __name__ == "__main__":
    # Example: path to a text file that contains base64-encoded audio (e.g., base64_audio.txt)
    base64_audio_file_path = r"C:\tmp\ibm\99c9cc74-fdc8-46c6-8f8d-3ce2d3bfeea3.mp3.b64"

    # Call the tool function
    transcription = audio_to_text(base64_audio_file_path)

    # Print the result
    print("Transcription result:")
    print(transcription)