Spaces:
Sleeping
Sleeping
import os | |
import re | |
import gradio as gr | |
import requests | |
import inspect | |
import pandas as pd | |
import time | |
# --- LangChain Imports | |
import constants | |
from langchain_google_genai import ChatGoogleGenerativeAI | |
from langchain.agents import AgentExecutor, create_tool_calling_agent | |
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder | |
from langchain_core.messages import SystemMessage | |
# --- Custom Tools --- | |
from wikipedia_tool import wikipedia_revision_by_year_keyword | |
from count_max_bird_species_tool import count_max_bird_species_in_video | |
from image_to_text_tool import image_to_text | |
from internet_search_tool import internet_search | |
from botanical_classification_tool import get_botanical_classification | |
from excel_parser_tool import parse_excel | |
from download_task_file import download_file_as_base64 | |
from utils import get_bytes, get_text_file_contents, get_base64 | |
# (Keep Constants as is) ok! | |
# --- Constants --- | |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
class LangChainAgent: | |
def __init__(self): | |
llm = ChatGoogleGenerativeAI( | |
model=constants.MODEL, | |
api_key=constants.API_KEY, | |
temperature=0.7) | |
tools = [ | |
wikipedia_revision_by_year_keyword, | |
count_max_bird_species_in_video, | |
image_to_text, | |
internet_search, | |
get_botanical_classification, | |
parse_excel | |
] | |
prompt = ChatPromptTemplate.from_messages([ | |
SystemMessage(content=(constants.PROMPT_LIMITADOR_LLM)), | |
MessagesPlaceholder(variable_name="chat_history"), | |
("human", "{input}"), | |
MessagesPlaceholder(variable_name="agent_scratchpad"), | |
]) | |
agent = create_tool_calling_agent(llm, tools, prompt=prompt) | |
self.executor = AgentExecutor(agent=agent, tools=tools, verbose=True) | |
def __call__(self, question: str) -> str: | |
print(f"LangChain agent received: {question[:50]}...") | |
download_file_as_base64 | |
#print("Waiting 60s before answering") | |
#time.sleep(10) # Delay for 60 seconds | |
result = self.executor.invoke({ | |
"input": question, | |
"chat_history": [] | |
}) | |
output = result.get("output", "No answer returned.") | |
print(f"Agent response: {output}") | |
match = re.search(r"FINAL ANSWER:\s*(.*)", output) | |
if match: | |
return match.group(1).strip() | |
else: | |
return output | |
def run_and_submit_all( profile: gr.OAuthProfile | None): | |
""" | |
Fetches all questions, runs the BasicAgent on them, submits all answers, | |
and displays the results. | |
""" | |
# --- Determine HF Space Runtime URL and Repo URL --- | |
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code | |
if profile: | |
username= f"{profile.username}" | |
print(f"User logged in: {username}") | |
else: | |
print("User not logged in.") | |
return "Please Login to Hugging Face with the button.", None | |
api_url = DEFAULT_API_URL | |
questions_url = f"{api_url}/questions" | |
submit_url = f"{api_url}/submit" | |
# 1. Instantiate Agent ( modify this part to create your agent) | |
try: | |
agent = LangChainAgent() | |
except Exception as e: | |
print(f"Error instantiating agent: {e}") | |
return f"Error initializing agent: {e}", None | |
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public) | |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" | |
print(agent_code) | |
# 2. Fetch Questions | |
print(f"Fetching questions from: {questions_url}") | |
try: | |
response = requests.get(questions_url, timeout=15) | |
response.raise_for_status() | |
questions_data = response.json() | |
if not questions_data: | |
print("Fetched questions list is empty.") | |
return "Fetched questions list is empty or invalid format.", None | |
print(f"Fetched {len(questions_data)} questions.") | |
except requests.exceptions.RequestException as e: | |
print(f"Error fetching questions: {e}") | |
return f"Error fetching questions: {e}", None | |
except requests.exceptions.JSONDecodeError as e: | |
print(f"Error decoding JSON response from questions endpoint: {e}") | |
print(f"Response text: {response.text[:500]}") | |
return f"Error decoding server response for questions: {e}", None | |
except Exception as e: | |
print(f"An unexpected error occurred fetching questions: {e}") | |
return f"An unexpected error occurred fetching questions: {e}", None | |
# 3. Run your Agent | |
results_log = [] | |
answers_payload = [] | |
print(f"Running agent on {len(questions_data)} questions...") | |
for item in questions_data: | |
task_id = item.get("task_id") | |
question_text = item.get("question") | |
if not task_id or question_text is None: | |
print(f"Skipping item with missing task_id or question: {item}") | |
continue | |
try: | |
file_name = item.get("file_name") | |
#provisorio | |
#if not file_name and "bird" not in question_text: | |
# continue | |
question_text_for_agent = question_text | |
if file_name: | |
print(f"The following question has attatched file: {question_text[:50]}") | |
BASE_DIR = os.path.dirname(os.path.abspath(__file__)) | |
if file_name.endswith(('.mp3', '.xlsx', '.png')): | |
file_path = os.path.join(BASE_DIR, 'files', f'{file_name}.b64') | |
base64_attatched_file = get_text_file_contents(file_path) | |
question_text_for_agent += f'. The content in base64 of the attatched file mentioned in the question is the following: {base64_attatched_file}' | |
else: | |
file_path = os.path.join(BASE_DIR, 'files', file_name) | |
plain_txt_file = get_text_file_contents(file_path) | |
question_text_for_agent += f'. The attatchement has the following content: {plain_txt_file}' | |
question_text_for_agent += f'. The content in base64 of the attatched file mentioned in the question is the following: {base64_attatched_file}' | |
submitted_answer = agent(question_text_for_agent) | |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) | |
except Exception as e: | |
print(f"Error running agent on task {task_id}: {e}") | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) | |
if not answers_payload: | |
print("Agent did not produce any answers to submit.") | |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) | |
# 4. Prepare Submission | |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} | |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." | |
print(status_update) | |
# 5. Submit | |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}") | |
try: | |
response = requests.post(submit_url, json=submission_data, timeout=60) | |
response.raise_for_status() | |
result_data = response.json() | |
final_status = ( | |
f"Submission Successful!\n" | |
f"User: {result_data.get('username')}\n" | |
f"Overall Score: {result_data.get('score', 'N/A')}% " | |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" | |
f"Message: {result_data.get('message', 'No message received.')}" | |
) | |
print("Submission successful.") | |
results_df = pd.DataFrame(results_log) | |
return final_status, results_df | |
except requests.exceptions.HTTPError as e: | |
error_detail = f"Server responded with status {e.response.status_code}." | |
try: | |
error_json = e.response.json() | |
error_detail += f" Detail: {error_json.get('detail', e.response.text)}" | |
except requests.exceptions.JSONDecodeError: | |
error_detail += f" Response: {e.response.text[:500]}" | |
status_message = f"Submission Failed: {error_detail}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except requests.exceptions.Timeout: | |
status_message = "Submission Failed: The request timed out." | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except requests.exceptions.RequestException as e: | |
status_message = f"Submission Failed: Network error - {e}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except Exception as e: | |
status_message = f"An unexpected error occurred during submission: {e}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
# --- Build Gradio Interface using Blocks --- | |
with gr.Blocks() as demo: | |
gr.Markdown("# Basic Agent Evaluation Runner") | |
gr.Markdown( | |
""" | |
**Instructions:** | |
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ... | |
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission. | |
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score. | |
--- | |
**Disclaimers:** | |
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions). | |
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async. | |
""" | |
) | |
gr.LoginButton() | |
run_button = gr.Button("Run Evaluation & Submit All Answers") | |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) | |
# Removed max_rows=10 from DataFrame constructor | |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) | |
run_button.click( | |
fn=run_and_submit_all, | |
outputs=[status_output, results_table] | |
) | |
if __name__ == "__main__": | |
files_dir = os.path.join(os.path.dirname(__file__), "files") | |
if not os.path.exists(files_dir): | |
print("Directory 'files/' does not exist.") | |
else: | |
print("\n".join(os.listdir(files_dir))) | |
print("\n" + "-"*30 + " App Starting " + "-"*30) | |
# Check for SPACE_HOST and SPACE_ID at startup for information | |
space_host_startup = os.getenv("SPACE_HOST") | |
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup | |
if space_host_startup: | |
print(f"✅ SPACE_HOST found: {space_host_startup}") | |
print(f" Runtime URL should be: https://{space_host_startup}.hf.space") | |
else: | |
print("ℹ️ SPACE_HOST environment variable not found (running locally?).") | |
if space_id_startup: # Print repo URLs if SPACE_ID is found | |
print(f"✅ SPACE_ID found: {space_id_startup}") | |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") | |
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") | |
else: | |
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") | |
print("-"*(60 + len(" App Starting ")) + "\n") | |
print("Launching Gradio Interface for Basic Agent Evaluation...") | |
demo.launch(debug=True, share=False) |