Spaces:
Sleeping
Sleeping
Alexandre Gazola
commited on
Commit
·
cf26711
1
Parent(s):
f844bc4
refactoring
Browse files- app.py +1 -59
- langchain_agent.py +55 -0
app.py
CHANGED
@@ -5,72 +5,14 @@ import requests
|
|
5 |
import inspect
|
6 |
import pandas as pd
|
7 |
import time
|
|
|
8 |
|
9 |
-
# --- LangChain Imports
|
10 |
-
import constants
|
11 |
-
from langchain_google_genai import ChatGoogleGenerativeAI
|
12 |
-
from langchain.agents import AgentExecutor, create_tool_calling_agent
|
13 |
-
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
|
14 |
-
from langchain_core.messages import SystemMessage
|
15 |
-
|
16 |
-
# --- Custom Tools ---
|
17 |
-
from wikipedia_tool import wikipedia_revision_by_year_keyword
|
18 |
-
from count_max_bird_species_tool import count_max_bird_species_in_video
|
19 |
-
from image_to_text_tool import image_to_text
|
20 |
-
from internet_search_tool import internet_search
|
21 |
-
from botanical_classification_tool import get_botanical_classification
|
22 |
-
from excel_parser_tool import parse_excel
|
23 |
-
from download_task_file import download_file_as_base64
|
24 |
from utils import get_bytes, get_text_file_contents, get_base64
|
25 |
|
26 |
# (Keep Constants as is) ok!
|
27 |
# --- Constants ---
|
28 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
29 |
|
30 |
-
class LangChainAgent:
|
31 |
-
def __init__(self):
|
32 |
-
llm = ChatGoogleGenerativeAI(
|
33 |
-
model=constants.MODEL,
|
34 |
-
api_key=constants.API_KEY,
|
35 |
-
temperature=0.7)
|
36 |
-
|
37 |
-
tools = [
|
38 |
-
wikipedia_revision_by_year_keyword,
|
39 |
-
count_max_bird_species_in_video,
|
40 |
-
image_to_text,
|
41 |
-
internet_search,
|
42 |
-
get_botanical_classification,
|
43 |
-
parse_excel
|
44 |
-
]
|
45 |
-
|
46 |
-
prompt = ChatPromptTemplate.from_messages([
|
47 |
-
SystemMessage(content=(constants.PROMPT_LIMITADOR_LLM)),
|
48 |
-
MessagesPlaceholder(variable_name="chat_history"),
|
49 |
-
("human", "{input}"),
|
50 |
-
MessagesPlaceholder(variable_name="agent_scratchpad"),
|
51 |
-
])
|
52 |
-
|
53 |
-
agent = create_tool_calling_agent(llm, tools, prompt=prompt)
|
54 |
-
self.executor = AgentExecutor(agent=agent, tools=tools, verbose=True)
|
55 |
-
|
56 |
-
def __call__(self, question: str) -> str:
|
57 |
-
print(f"LangChain agent received: {question[:50]}...")
|
58 |
-
|
59 |
-
#print("Waiting 60s before answering")
|
60 |
-
#time.sleep(10) # Delay for 60 seconds
|
61 |
-
|
62 |
-
result = self.executor.invoke({
|
63 |
-
"input": question,
|
64 |
-
"chat_history": []
|
65 |
-
})
|
66 |
-
output = result.get("output", "No answer returned.")
|
67 |
-
print(f"Agent response: {output}")
|
68 |
-
match = re.search(r"FINAL ANSWER:\s*(.*)", output)
|
69 |
-
if match:
|
70 |
-
return match.group(1).strip()
|
71 |
-
else:
|
72 |
-
return output
|
73 |
-
|
74 |
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
75 |
"""
|
76 |
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
|
|
5 |
import inspect
|
6 |
import pandas as pd
|
7 |
import time
|
8 |
+
from langchain_agent import LangChainAgent
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
from utils import get_bytes, get_text_file_contents, get_base64
|
11 |
|
12 |
# (Keep Constants as is) ok!
|
13 |
# --- Constants ---
|
14 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
17 |
"""
|
18 |
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
langchain_agent.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import constants
|
3 |
+
import time
|
4 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
5 |
+
from langchain.agents import AgentExecutor, create_tool_calling_agent
|
6 |
+
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
|
7 |
+
from langchain_core.messages import SystemMessage
|
8 |
+
|
9 |
+
# --- Custom Tools ---
|
10 |
+
from wikipedia_tool import wikipedia_revision_by_year_keyword
|
11 |
+
from count_max_bird_species_tool import count_max_bird_species_in_video
|
12 |
+
from image_to_text_tool import image_to_text
|
13 |
+
from internet_search_tool import internet_search
|
14 |
+
from botanical_classification_tool import get_botanical_classification
|
15 |
+
from excel_parser_tool import parse_excel
|
16 |
+
|
17 |
+
class LangChainAgent:
|
18 |
+
def __init__(self):
|
19 |
+
llm = ChatGoogleGenerativeAI(
|
20 |
+
model=constants.MODEL,
|
21 |
+
api_key=constants.API_KEY,
|
22 |
+
temperature=0.7)
|
23 |
+
|
24 |
+
tools = [
|
25 |
+
wikipedia_revision_by_year_keyword,
|
26 |
+
count_max_bird_species_in_video,
|
27 |
+
image_to_text,
|
28 |
+
internet_search,
|
29 |
+
get_botanical_classification,
|
30 |
+
parse_excel
|
31 |
+
]
|
32 |
+
|
33 |
+
prompt = ChatPromptTemplate.from_messages([
|
34 |
+
SystemMessage(content=constants.PROMPT_LIMITADOR_LLM),
|
35 |
+
MessagesPlaceholder(variable_name="chat_history"),
|
36 |
+
("human", "{input}"),
|
37 |
+
MessagesPlaceholder(variable_name="agent_scratchpad"),
|
38 |
+
])
|
39 |
+
|
40 |
+
agent = create_tool_calling_agent(llm, tools, prompt=prompt)
|
41 |
+
self.executor = AgentExecutor(agent=agent, tools=tools, verbose=True)
|
42 |
+
|
43 |
+
def __call__(self, question: str) -> str:
|
44 |
+
print(f"LangChain agent received: {question[:50]}...")
|
45 |
+
result = self.executor.invoke({
|
46 |
+
"input": question,
|
47 |
+
"chat_history": []
|
48 |
+
})
|
49 |
+
output = result.get("output", "No answer returned.")
|
50 |
+
print(f"Agent response: {output}")
|
51 |
+
match = re.search(r"FINAL ANSWER:\s*(.*)", output)
|
52 |
+
if match:
|
53 |
+
return match.group(1).strip()
|
54 |
+
else:
|
55 |
+
return output
|