import cv2 import numpy as np import constants from langchain_core.prompts import ChatPromptTemplate from langchain_google_genai import ChatGoogleGenerativeAI from langgraph.graph import StateGraph, END from typing import TypedDict, List, Dict import google.generativeai as genai def image_to_fen(image_bytes): genai.configure(api_key=constants.API_KEY) model = genai.GenerativeModel(constants.MODEL) response = model.generate_content([ {"mime_type": "image/jpeg", "data": image_bytes}, "Describe the chessboard in this image and provide the FEN notation." ]) print(response.text) return '' if __name__ == '__main__': # Example usage: # 1. Load an image from a file (replace with your image path) image_path = r"C:\Users\agazo\Downloads\cca530fc-4052-43b2-b130-b30968d8aa44_file.png" # Replace with a valid image path try: with open(image_path, "rb") as image_file: image_bytes = image_file.read() except FileNotFoundError: print(f"Error: File not found at {image_path}. Please make sure the path is correct and the file exists.") exit() # 2. Call the function fen = image_to_fen(image_bytes) print(f"FEN: {fen}") #resultado esperado do FEN; 1K6/1PP5/P2RBBqP/4n3/Q7/p2b4/1pp3pp/1k2r3 w - - 0 1