Spaces:
Running
Running
File size: 14,167 Bytes
8664fba 5f9c44d 8664fba 0b3117f 221fb8a ca89148 1783518 5f9c44d 07044da ca89148 575c750 bb94aa7 5f9c44d 8664fba 0b3117f ca89148 0b3117f 8664fba 0b3117f f9140ad 0b3117f ca89148 0b3117f ca89148 0b3117f ca89148 0b3117f f9140ad ca89148 0b3117f ca89148 0b3117f ca89148 0b3117f f9140ad ca89148 0b3117f ca89148 0b3117f ca89148 0b3117f ca89148 0b3117f ca89148 0b3117f 575c750 ca89148 07044da ca89148 07044da 8664fba ca89148 8664fba ca89148 8664fba 387c612 8664fba 387c612 8664fba 1783518 8664fba 07044da 0b3117f ca89148 0b3117f ca89148 0b3117f 575c750 ca89148 07044da ca89148 07044da ca89148 07044da ca89148 07044da ca89148 f9140ad ca89148 f9140ad ca89148 f9140ad ca89148 221fb8a 0b3117f 8664fba 356b0eb 8664fba ca89148 f9140ad 108bc02 ca89148 5f9c44d ca89148 5f9c44d ca89148 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 |
import gradio as gr
from gradio_leaderboard import Leaderboard, SelectColumns, ColumnFilter
import config
from envs import RESULTS_REPO_ID, REPO_ID, API, HF_TOKEN
from pathlib import Path
import pandas as pd
import os
import json
from utils.data import parse_json_files, preprocess_traces
from utils.viz import create_scatter_plot, create_flow_chart
from utils.processing import check_and_process_uploads
from huggingface_hub import snapshot_download
from apscheduler.schedulers.background import BackgroundScheduler
from datetime import datetime
import json
import re
import markdown
import asyncio
from apscheduler.schedulers.asyncio import AsyncIOScheduler
def restart_space():
API.restart_space(repo_id=REPO_ID, token=HF_TOKEN)
# New function to download results
def download_latest_results():
print("Downloading latest results...")
snapshot_download(RESULTS_REPO_ID,
local_dir=abs_path / "evals_live",
repo_type='dataset',
tqdm_class=None,
etag_timeout=30,
max_workers=4,
)
print("Download complete.")
abs_path = Path(__file__).parent
# Global variable to store preprocessed data
preprocessed_traces = {}
def get_analyzed_traces(agent_name, benchmark_name):
return preprocessed_traces.get(benchmark_name, {}).get(agent_name)
def update_agent_dropdown(benchmark_name, metric):
df = parse_json_files(os.path.join(abs_path, "evals_live"), benchmark_name)
agents = df['agent_name'].tolist()
best_agent = get_best_agent(benchmark_name, metric)
return gr.Dropdown(choices=agents, value=best_agent, label="Select Agent")
def get_best_agent(benchmark_name, metric):
df = parse_json_files(os.path.join(abs_path, "evals_live"), benchmark_name)
return df.loc[df[metric].idxmax()]['agent_name']
def update_task_analysis(benchmark_name, agent_name):
if not agent_name:
return "Please select an agent.", None, None, ""
analyzed_traces = get_analyzed_traces(agent_name, benchmark_name)
if not analyzed_traces:
return f"No analysis available for agent: {agent_name}", None, None, ""
task_ids = list(analyzed_traces.keys())
return "", None, gr.Dropdown(choices=task_ids, value=task_ids[0], label="Select Task"), ""
def update_task_details(benchmark_name, agent_name, task_id):
if not task_id:
return "Please select a task.", None, ""
analyzed_traces = get_analyzed_traces(agent_name, benchmark_name)
if not analyzed_traces or task_id not in analyzed_traces:
return f"No analysis available for task: {task_id}", None, ""
analysis = analyzed_traces[task_id]
summary = analysis.get('summary', {})
overview = f"# Task Overview\n\n{summary.get('overview', 'No overview available.')}\n\n"
overview += f"## Successes\n{summary.get('successes', 'No successes listed.')}\n\n"
overview += f"## Challenges\n{summary.get('challenges', 'No challenges listed.')}\n\n"
flow_chart = create_flow_chart(analysis['steps'])
return overview, flow_chart, ""
def format_call_info(step, step_index):
call_data = step['call_data']
analysis = step['analysis']
def format_json(obj):
# if isinstance(obj, dict) and 'choices' in obj:
# # Special handling for message content
# formatted_content = format_message_content(obj['choices'][0])
# return f'<div class="message-content">{formatted_content}</div>'
# else:
json_str = json.dumps(obj, indent=2)
json_str = json_str.replace(' ', ' ')
json_str = json_str.replace('\n', '<br>')
return f'<div class="json-wrapper">{json_str}</div>'
# Currently not used but we can enable it to format message content
def format_message_content(content):
# Convert Markdown to HTML
html_content = markdown.markdown(content)
# Replace ``` code blocks with styled pre blocks
html_content = re.sub(r'```python\n(.*?)```', lambda m: f'<pre class="code-block">{m.group(1)}</pre>', html_content, flags=re.DOTALL)
return html_content
formatted_info = f"""
<style>
.json-wrapper {{
white-space: pre-wrap;
word-wrap: break-word;
font-family: monospace;
max-height: 300px;
overflow-y: auto;
background-color: #f5f5f5;
padding: 10px;
border-radius: 5px;
}}
.message-content {{
white-space: normal;
word-wrap: break-word;
font-family: Arial, sans-serif;
max-height: 500px;
overflow-y: auto;
background-color: #ffffff;
padding: 10px;
border-radius: 5px;
border: 1px solid #e0e0e0;
}}
.code-block {{
background-color: #f0f0f0;
padding: 10px;
border-radius: 5px;
font-family: monospace;
white-space: pre-wrap;
word-wrap: break-word;
}}
</style>
<h2>Step {step_index + 1}: {analysis.get('step_outline', 'N/A')}</h2>
<h3>Call Metadata</h3>
<ul>
<li><strong>Weave Task ID:</strong> {call_data['weave_task_id']}</li>
<li><strong>Trace ID:</strong> {call_data['trace_id']}</li>
<li><strong>Project ID:</strong> {call_data['project_id']}</li>
<li><strong>Created Timestamp:</strong> {datetime.fromtimestamp(call_data['created_timestamp'])}</li>
<li><strong>Model:</strong> {call_data['inputs']['model']}</li>
</ul>
<h3>Inputs</h3>
{format_json(call_data['inputs'])}
<h3>Outputs</h3>
{format_json(call_data['outputs'])}
<h3>Usage</h3>
{format_json(call_data['summary'])}
<h3>Analysis</h3>
<ul>
<li><strong>Description:</strong> {analysis['description']}</li>
<li><strong>Assessment:</strong> {analysis['assessment']}</li>
<li><strong>Success:</strong> {analysis['success']}</li>
<li><strong>Action Type:</strong> {analysis['action_type']}</li>
</ul>
"""
return formatted_info
with gr.Blocks() as demo:
gr.Markdown("""
# 🥇 Agent Leaderboard
""")
with gr.Tabs():
with gr.Tab("USACO"):
with gr.Row():
with gr.Column(scale=1):
scatter_plot = gr.Plot(create_scatter_plot(parse_json_files(os.path.join(abs_path, "evals_live"), 'usaco'), "results_total_cost", "results_accuracy", "Cost", "Accuracy", ["agent_name"]))
with gr.Column(scale=1):
Leaderboard(
value=parse_json_files(os.path.join(abs_path, "evals_live"), 'usaco'),
select_columns=SelectColumns(
default_selection=config.USACO_ON_LOAD_COLUMNS,
cant_deselect=["agent_name"],
label="Select Columns to Display:",
),
search_columns=config.USACO_SEARCH_COLUMNS,
column_widths={"agent_name": 40,
"results_accuracy": 20,
"results_total_cost": 20},
)
gr.Markdown("## Agent Monitor")
with gr.Row():
with gr.Column(scale=1):
task_dropdown = gr.Dropdown(label="Select USACO Task")
task_overview = gr.Markdown()
with gr.Column(scale=1):
agent_dropdown = gr.Dropdown(label="Select Agent")
step_details = gr.Markdown()
with gr.Row():
flow_chart = gr.Plot(label="Task Flow")
# Initialize the agent dropdown with the best agent
demo.load(update_agent_dropdown, inputs=[gr.Textbox(value="usaco", visible=False), gr.Textbox(value="results_accuracy", visible=False)], outputs=[agent_dropdown])
demo.load(update_task_analysis, inputs=[gr.Textbox(value="usaco", visible=False), agent_dropdown], outputs=[task_overview, flow_chart, task_dropdown, gr.Textbox(visible=False)])
agent_dropdown.change(update_task_analysis,
inputs=[gr.Textbox(value="usaco", visible=False), agent_dropdown],
outputs=[task_overview, flow_chart, task_dropdown, gr.Textbox(visible=False)])
task_dropdown.change(update_task_details,
inputs=[gr.Textbox(value="usaco", visible=False), agent_dropdown, task_dropdown],
outputs=[task_overview, flow_chart, gr.Textbox(visible=False)])
gr.Markdown("## Raw Predictions")
with gr.Row():
with gr.Column(scale=1):
raw_agent_dropdown = gr.Dropdown(label="Select Agent")
with gr.Column(scale=1):
raw_task_dropdown = gr.Dropdown(label="Select Task")
with gr.Column(scale=1):
raw_step_dropdown = gr.Dropdown(label="Select Step")
with gr.Row():
raw_call_details = gr.HTML()
def update_raw_task_dropdown(agent_name):
analyzed_traces = get_analyzed_traces(agent_name, "usaco")
if not analyzed_traces:
return gr.Dropdown(choices=[], label="Select Task"), gr.Dropdown(choices=[], label="Select Step"), f"No raw predictions data available for agent: {agent_name}."
task_ids = list(analyzed_traces.keys())
steps = analyzed_traces[task_ids[0]]['steps']
return gr.Dropdown(choices=task_ids, label="Select Task", value=task_ids[0]), gr.Dropdown(choices=[(f"Step {i+1}", i) for i in range(len(steps))], label="Select Step", value=0), update_raw_call_details(agent_name, task_ids[0], 0)
def update_raw_step_dropdown(agent_name, task_id):
analyzed_traces = get_analyzed_traces(agent_name, "usaco")
if not analyzed_traces or task_id not in analyzed_traces:
return gr.Dropdown(choices=[], label="Select Step", value="No data available.")
steps = analyzed_traces[task_id]['steps']
return gr.Dropdown(choices=[(f"Step {i+1}", i) for i in range(len(steps))], label="Select Step", value=0)
def update_raw_call_details(agent_name, task_id, step_index):
analyzed_traces = get_analyzed_traces(agent_name, "usaco")
if not analyzed_traces or task_id not in analyzed_traces:
return "No data available for this selection."
steps = analyzed_traces[task_id]['steps']
if step_index is None:
return "Invalid step selection."
step = steps[step_index]
return format_call_info(step, step_index)
# Initialize the raw agent dropdown with all agents
demo.load(update_agent_dropdown,
inputs=[gr.Textbox(value="usaco", visible=False), gr.Textbox(value="results_accuracy", visible=False)],
outputs=[raw_agent_dropdown])
demo.load(update_raw_task_dropdown,
inputs=[raw_agent_dropdown],
outputs=[raw_task_dropdown, raw_step_dropdown])
demo.load(update_raw_call_details,
inputs=[raw_agent_dropdown, raw_task_dropdown, raw_step_dropdown],
outputs=[raw_call_details])
raw_agent_dropdown.change(update_raw_task_dropdown,
inputs=[raw_agent_dropdown],
outputs=[raw_task_dropdown, raw_step_dropdown, raw_call_details])
raw_task_dropdown.change(update_raw_step_dropdown,
inputs=[raw_agent_dropdown, raw_task_dropdown],
outputs=[raw_step_dropdown])
raw_step_dropdown.change(update_raw_call_details,
inputs=[raw_agent_dropdown, raw_task_dropdown, raw_step_dropdown],
outputs=[raw_call_details])
with gr.Tab("SWE-Bench"):
with gr.Row():
with gr.Column(scale=1):
scatter_plot = gr.Plot(create_scatter_plot(parse_json_files(os.path.join(abs_path, "evals_live"), 'swebench_lite'), "results_total_cost", "results_accuracy", "Cost (in USD)", "Accuracy", ["agent_name"]))
with gr.Column(scale=1):
Leaderboard(
value=parse_json_files(os.path.join(abs_path, "evals_live"), 'swebench_lite'),
select_columns=SelectColumns(
default_selection=config.SWEBENCH_ON_LOAD_COLUMNS,
cant_deselect=["agent_name"],
label="Select Columns to Display:",
),
search_columns=config.SWEBENCH_SEARCH_COLUMNS,
column_widths={"agent_name": 40,
"results_accuracy": 20,
"results_total_cost": 20},
)
with gr.Tab("About"):
gr.Markdown((Path(__file__).parent / "about.md").read_text())
async def main():
# Preprocess traces
preprocess_traces()
# Download the results from the Hugging Face Hub
await asyncio.to_thread(download_latest_results)
# Check for new uploads and process them
await check_and_process_uploads()
scheduler = AsyncIOScheduler()
scheduler.add_job(restart_space, "interval", hours=1)
scheduler.add_job(download_latest_results, "interval", hours=1)
scheduler.add_job(check_and_process_uploads, "interval", hours=1)
scheduler.start()
await demo.launch()
if __name__ == "__main__":
asyncio.run(main()) |