File size: 5,905 Bytes
170a7ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c4371f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import os
import gradio as gr
import requests
import pandas as pd

from smolagents import LiteLLMModel, CodeAgent, DuckDuckGoSearchTool
from gaia_tools import ReverseTextTool, RunPythonFileTool, download_server

# System prompt for the agent
SYSTEM_PROMPT = """You are a general AI assistant. I will ask you a question.

Report your thoughts, and finish your answer with just the answer — no prefixes like "FINAL ANSWER:".

Your answer should be a number OR as few words as possible OR a comma-separated list of numbers and/or strings.

If you're asked for a number, don’t use commas or units like $ or %, unless specified.

If you're asked for a string, don’t use articles or abbreviations (e.g. for cities), and write digits in plain text unless told otherwise.



Tool Use Guidelines:

1. Do *not* use any tools outside of the provided tools list.

2. Always use *only one tool at a time* in each step of your execution.

3. If the question refers to a .py file or uploaded Python script, use *RunPythonFileTool* to execute it and base your answer on its output.

4. If the question looks reversed (starts with a period or reads backward), first use *ReverseTextTool* to reverse it, then process the question.

5. For logic or word puzzles, solve them directly unless they are reversed — in which case, decode first using *ReverseTextTool*.

6. When dealing with Excel files, prioritize using the *excel* tool over writing code in *terminal-controller*.

7. If you need to download a file, always use the *download_server* tool and save it to the correct path.

8. Even for complex tasks, assume a solution exists. If one method fails, try another approach using different tools.

9. Due to context length limits, keep browser-based tasks (e.g., searches) as short and efficient as possible.

"""
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

# Agent wrapper using LiteLLMModel
class MyAgent:
    def _init_(self):
        gemini_api_key = os.getenv("GEMINI_API_KEY")
        if not gemini_api_key:
            raise ValueError("GEMINI_API_KEY not set in environment variables.")
        
        self.model = LiteLLMModel(
            model_id="gemini/gemini-2.0-flash-lite",
            api_key=gemini_api_key,
            system_prompt=SYSTEM_PROMPT
        )
        
        self.agent = CodeAgent(
            tools=[
                DuckDuckGoSearchTool(),
                ReverseTextTool,
                RunPythonFileTool,
                download_server
            ],
            model=self.model,
            add_base_tools=True,
        )

    def _call_(self, question: str) -> str:
        return self.agent.run(question)

# Main evaluation function
def run_and_submit_all(profile: gr.OAuthProfile | None):
    space_id = os.getenv("SPACE_ID")

    if profile:
        username = profile.username
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please login to Hugging Face.", None

    questions_url = f"{DEFAULT_API_URL}/questions"
    submit_url = f"{DEFAULT_API_URL}/submit"

    try:
        agent = MyAgent()
    except Exception as e:
        return f"Error initializing agent: {e}", None

    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
    except Exception as e:
        return f"Error fetching questions: {e}", None

results_log = []
answers_payload = []

for item in questions_data:
    task_id = item.get("task_id")
    question_text = item.get("question")
    if not task_id or question_text is None:
        continue
    try:
        submitted_answer = agent(question_text)
        answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
        results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
    except Exception as e:
        results_log.append({
            "Task ID": task_id,
            "Question": question_text,
            "Submitted Answer": f"AGENT ERROR: {e}"
        })

if not answers_payload:
    return "Agent did not return any answers.", pd.DataFrame(results_log)

    submission_data = {
        "username": profile.username.strip(),
        "agent_code": f"https://huggingface.co/spaces/{space_id}/tree/main",
        "answers": answers_payload
    }

    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        return final_status, pd.DataFrame(results_log)
    except Exception as e:
        return f"Submission failed: {e}", pd.DataFrame(results_log)

# Gradio UI setup
with gr.Blocks() as demo:
    gr.Markdown("# Basic Agent Evaluation Runner")
    gr.Markdown("""

    *Instructions:*

    1. Clone this space and configure your Gemini API key.

    2. Log in to Hugging Face.

    3. Run your agent on evaluation tasks and submit answers.

    """)

    gr.LoginButton()
    run_button = gr.Button("Run Evaluation & Submit All Answers")
    status_output = gr.Textbox(label="Submission Result", lines=5, interactive=False)
    results_table = gr.DataFrame(label="Results", wrap=True)

    run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])

if __name__ == "__main__":
    print("🔧 App starting...")
    demo.launch(debug=True, share=False)