File size: 6,175 Bytes
10e9b7d
 
eccf8e4
7d65c66
3c4371f
c98a4ad
 
10e9b7d
e80aab9
3db6293
e80aab9
c98a4ad
 
31243f4
c98a4ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31243f4
c98a4ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c4371f
7e4a06b
c98a4ad
3c4371f
7e4a06b
3c4371f
7d65c66
3c4371f
7e4a06b
31243f4
 
e80aab9
31243f4
c98a4ad
31243f4
 
c98a4ad
36ed51a
c1fd3d2
3c4371f
eccf8e4
31243f4
7d65c66
31243f4
 
c98a4ad
31243f4
e80aab9
31243f4
3c4371f
c98a4ad
e80aab9
7d65c66
 
c98a4ad
31243f4
 
 
 
 
 
7d65c66
 
 
31243f4
c98a4ad
31243f4
 
 
 
7d65c66
31243f4
c98a4ad
e80aab9
7d65c66
e80aab9
 
31243f4
e80aab9
 
3c4371f
 
 
e80aab9
31243f4
 
e80aab9
c98a4ad
7d65c66
c98a4ad
e80aab9
c98a4ad
e80aab9
c98a4ad
0ee0419
e514fd7
 
 
c98a4ad
 
 
e514fd7
 
c98a4ad
e514fd7
e80aab9
 
7e4a06b
31243f4
e80aab9
9088b99
7d65c66
e80aab9
31243f4
 
 
e80aab9
 
 
3c4371f
 
c98a4ad
7d65c66
3c4371f
 
7d65c66
3c4371f
c98a4ad
7d65c66
c98a4ad
7d65c66
 
 
c98a4ad
7d65c66
3c4371f
c98a4ad
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import os
import gradio as gr
import requests
import inspect
import pandas as pd
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
import torch

# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

# --- Advanced GAIA-Ready Agent ---
class GaiaAgent:
    def __init__(self):
        print("Initializing GaiaAgent with open-source model...")

        model_name = "google/flan-t5-large"  # Good balance between size and reasoning quality
        auth_token = os.getenv("HF_TOKEN")

        self.device = 0 if torch.cuda.is_available() else -1
        self.pipe = pipeline(
            "text2text-generation",
            model=model_name,
            tokenizer=model_name,
            token=auth_token,
            device=self.device
        )
        print("Model and tokenizer loaded.")

    def __call__(self, question: str) -> str:
        print(f"Agent received question: {question[:60]}...")
        prompt = (
            f"Answer the following question as accurately as possible.\n"
            f"Question: {question}\n"
            f"Answer:"
        )
        try:
            result = self.pipe(prompt, max_new_tokens=64, clean_up_tokenization_spaces=True)[0]["generated_text"]
            # Ensure clean return without "Answer:" prefix
            answer = result.strip().replace("Answer:", "").strip()
            print(f"Agent returned: {answer}")
            return answer
        except Exception as e:
            print(f"Error during model inference: {e}")
            return f"AGENT ERROR: {e}"

# --- Evaluation & Submission Logic ---
def run_and_submit_all(profile: gr.OAuthProfile | None):
    space_id = os.getenv("SPACE_ID")

    if profile:
        username = f"{profile.username}"
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    try:
        agent = GaiaAgent()
    except Exception as e:
        return f"Error initializing agent: {e}", None

    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    print(agent_code)

    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
            return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(questions_data)} questions.")
    except requests.exceptions.RequestException as e:
        return f"Error fetching questions: {e}", None
    except requests.exceptions.JSONDecodeError as e:
        return f"Error decoding server response for questions: {e}", None

    results_log = []
    answers_payload = []

    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question")
        if not task_id or question_text is None:
            continue
        try:
            submitted_answer = agent(question_text)
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
        except Exception as e:
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})

    if not answers_payload:
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
    print(f"Submitting {len(answers_payload)} answers to: {submit_url}")

    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
    except requests.exceptions.RequestException as e:
        return f"Submission Failed: {e}", pd.DataFrame(results_log)
    except Exception as e:
        return f"An unexpected error occurred during submission: {e}", pd.DataFrame(results_log)

# --- Gradio UI ---
with gr.Blocks() as demo:
    gr.Markdown("# GAIA-Level Agent Evaluation Runner")
    gr.Markdown(
        """
        **Instructions:**

        1. Modify and extend the agent in the code section.
        2. Login with your Hugging Face account to submit answers.
        3. Click the button to run and submit.

        ---
        *This agent uses `google/flan-t5-large` from Hugging Face to answer questions.*
        """
    )

    gr.LoginButton()
    run_button = gr.Button("Run Evaluation & Submit All Answers")

    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)

    run_button.click(
        fn=run_and_submit_all,
        outputs=[status_output, results_table]
    )

if __name__ == "__main__":
    print("\n" + "-"*30 + " App Starting " + "-"*30)
    space_host_startup = os.getenv("SPACE_HOST")
    space_id_startup = os.getenv("SPACE_ID")

    if space_host_startup:
        print(f"✅ SPACE_HOST found: {space_host_startup}")
        print(f"   Runtime URL should be: https://{space_host_startup}.hf.space")
    else:
        print("ℹ️  SPACE_HOST not found.")

    if space_id_startup:
        print(f"✅ SPACE_ID found: {space_id_startup}")
        print(f"   Repo URL: https://huggingface.co/spaces/{space_id_startup}")
    else:
        print("ℹ️  SPACE_ID not found.")

    print("-"*(60 + len(" App Starting ")) + "\n")
    demo.launch(debug=True, share=False)