File size: 6,175 Bytes
10e9b7d eccf8e4 7d65c66 3c4371f c98a4ad 10e9b7d e80aab9 3db6293 e80aab9 c98a4ad 31243f4 c98a4ad 31243f4 c98a4ad 3c4371f 7e4a06b c98a4ad 3c4371f 7e4a06b 3c4371f 7d65c66 3c4371f 7e4a06b 31243f4 e80aab9 31243f4 c98a4ad 31243f4 c98a4ad 36ed51a c1fd3d2 3c4371f eccf8e4 31243f4 7d65c66 31243f4 c98a4ad 31243f4 e80aab9 31243f4 3c4371f c98a4ad e80aab9 7d65c66 c98a4ad 31243f4 7d65c66 31243f4 c98a4ad 31243f4 7d65c66 31243f4 c98a4ad e80aab9 7d65c66 e80aab9 31243f4 e80aab9 3c4371f e80aab9 31243f4 e80aab9 c98a4ad 7d65c66 c98a4ad e80aab9 c98a4ad e80aab9 c98a4ad 0ee0419 e514fd7 c98a4ad e514fd7 c98a4ad e514fd7 e80aab9 7e4a06b 31243f4 e80aab9 9088b99 7d65c66 e80aab9 31243f4 e80aab9 3c4371f c98a4ad 7d65c66 3c4371f 7d65c66 3c4371f c98a4ad 7d65c66 c98a4ad 7d65c66 c98a4ad 7d65c66 3c4371f c98a4ad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
import os
import gradio as gr
import requests
import inspect
import pandas as pd
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
import torch
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# --- Advanced GAIA-Ready Agent ---
class GaiaAgent:
def __init__(self):
print("Initializing GaiaAgent with open-source model...")
model_name = "google/flan-t5-large" # Good balance between size and reasoning quality
auth_token = os.getenv("HF_TOKEN")
self.device = 0 if torch.cuda.is_available() else -1
self.pipe = pipeline(
"text2text-generation",
model=model_name,
tokenizer=model_name,
token=auth_token,
device=self.device
)
print("Model and tokenizer loaded.")
def __call__(self, question: str) -> str:
print(f"Agent received question: {question[:60]}...")
prompt = (
f"Answer the following question as accurately as possible.\n"
f"Question: {question}\n"
f"Answer:"
)
try:
result = self.pipe(prompt, max_new_tokens=64, clean_up_tokenization_spaces=True)[0]["generated_text"]
# Ensure clean return without "Answer:" prefix
answer = result.strip().replace("Answer:", "").strip()
print(f"Agent returned: {answer}")
return answer
except Exception as e:
print(f"Error during model inference: {e}")
return f"AGENT ERROR: {e}"
# --- Evaluation & Submission Logic ---
def run_and_submit_all(profile: gr.OAuthProfile | None):
space_id = os.getenv("SPACE_ID")
if profile:
username = f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
try:
agent = GaiaAgent()
except Exception as e:
return f"Error initializing agent: {e}", None
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
return f"Error fetching questions: {e}", None
except requests.exceptions.JSONDecodeError as e:
return f"Error decoding server response for questions: {e}", None
results_log = []
answers_payload = []
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
continue
try:
submitted_answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.RequestException as e:
return f"Submission Failed: {e}", pd.DataFrame(results_log)
except Exception as e:
return f"An unexpected error occurred during submission: {e}", pd.DataFrame(results_log)
# --- Gradio UI ---
with gr.Blocks() as demo:
gr.Markdown("# GAIA-Level Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Modify and extend the agent in the code section.
2. Login with your Hugging Face account to submit answers.
3. Click the button to run and submit.
---
*This agent uses `google/flan-t5-large` from Hugging Face to answer questions.*
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID")
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST not found.")
if space_id_startup:
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
else:
print("ℹ️ SPACE_ID not found.")
print("-"*(60 + len(" App Starting ")) + "\n")
demo.launch(debug=True, share=False)
|